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Abstract 
We solve analytically the fully quantum mechanical Hamiltonian of a two-mode Bose Einstein Condensates (BECs) system 
using Sen-Mandal approach which give more precise solution than that obtained using short-time approximation. These 
solutions are used to obtain the general higher order intermodal antibunching in the two mode BECs. We find the time 
dependent antibunching parameter in the inter-mode and the degree of antibunching parameter increases with order. The 
degree of nonclassicality can be manipulated with the magnitude of chemical potential difference between the modes and the 
interaction constants. 
 
Keywords: Nonclassical effects, BEC, Sen-Mandal approach, Short-time technique, Higher order antibunching, Degree of 
nonclassicality. 
 

Introduction 
The nonclassical states of a quantum system are essential 
requirements for applications of quantum states. For example 
nonclassical states are required for continuous variable quantum 
cryptography, teleportation of coherent states, quantum 
computation and communication, useful in building a single-
particle (single photon) sources1-4. It is reported that such 
nonclassical states are present in two-mode BECs system and 
they has many practical applications. Such as, two weekly 
coupled BECs confined in double well trap can produce 
Josephson charged qubits, quantum states can transfer using 
two-component BECs coupled by optical fibre and many 
applications of two-mode BECs in quantum information 
processing are reported5-8. Recently, the multiparticle 
entanglement and spin-squeezed state on a two layer atom chip 
are experimentally realized with two-component BECs8. These 
facts had motivated some of the present authors to 
systematically investigate the nonclassical properties of two-
mode BECs systems of two categories: i. atom-atom BEC, 
where total no of bosons present in the system is conserved, and 
ii. atom-molecule BEC, where total no of bosons present in the 
system is not conserved9,10. Those recent works reported the 
signature of a group of experimentally realizable nonclassical 
criteria which have practical relevance, such as intermodal 
entanglement of lower-order and higher-order, intermodal 
antibunching of lower-order, antibunching of lower-order and 
higher-order in  pure mode, squeezing in a two-mode BECs 
system9,10. Till now, no one have investigated the higher order 
intermodal antibunching in two-mode BECs system. Most of the 
works on two-mode BECs system reported the nonclassical 

properties in lower-order. Recently, a number of experimental 
and theoretical observations of higher-order nonclassicalities are 
reported in quantum optical, BECs system and it also reported 
that the week nonclassicalities is easily detectable using higher-
order nonclassical criteria9-12. Keeping this in mind we will 
investigate the possibilities of higher-order intermodal 
antibunching in two-mode BECs system. 
 
We organise this paperas follows. In sec. II we introduce the 
model Hamiltonian of a two-mode BECs system and solve this 
Hamiltonian using Sen-Mandal approach13. In Sec. III we 
investigate the higher-order antibunching in the coupled mode. 
Finally we conclude in Sec. IV. 
 
Model Hamiltonian 
The completely quantum mechanical description of repulsive 
two-mode BECs system is denoted by the Hamiltonian as9: 
 
퐻 = (푎 푎 + 푏 푏 )− Δ (푎 푎 − 푏 푏)− (푎 푏 + 푏 푎)  (1) 
 
Throughout our present study, we consider ħ=1. The single-
particle annihilation (creation) operators 푎 (푎 ) and 푏 (푏 ) 
correspond to the modes 푎 and 푏 respectively. The parameter 
휀 푑푒푛표푡푒푠 the single atom tunnelling amplitude,Δ휇 is the 
chemical potential difference between the modes and 휅 denotes 
the coupling constant for intra-mode interactions. This 
Hamiltonian describes both, the double-well BEC (external 
Josephson effect) and the single-well two level BEC (internal 
Josephson effect) as shown in Figures-1(a) and 1(b) 
respectively. In case of double-well BECs system the 
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intermodal coupling is considered very small, whereas in the 
single-well two-mode BECs system there is no such restriction. 
To study the antibunching properties of the two-mode BECs 
system, we need to find the temporal variation of the operators 
for the two modes by solving the Hamiltonian (1). The 
Heisenberg equations of motion corresponding to the 
Hamiltonian (1) are: 
 

푎̇(푡) = −푖
휅
2 푎

(푡)푎 (푡)−
Δ휇
2 푎(푡)−

휀
2푏

(푡) , 

푏̇(푡) = −푖 푏 (푡)푏 (푡) + Δ 푏(푡) − 푎(푡) .          (2) 
 

 
(a) 

 
(b) 

Figure-1 
Schematic diagram of two-mode BEC system;  

(a) double-well BEC (b) single-well two-mode BEC 
 
These are the coupled nonlinear differential equations of field 
operators and are not exactly solvable in closed analytic form. 
The well-known method to solve the above two equations is 
short-time approximation. We solve these coupled equations 
using Sen-Mandal approach13.  
 
The solutions obtained from Sen-Mandal approach is more 
exact than the solutions obtained from short-time 
approximations14. The methodology used here is available in 
our previous papers and details of the present solutions are 
available in our recent publication9,13,15-18. The solutions of 
Equation 2 are: 

푎(푡)
= 푓 푎(0) + 푓 푏(0) + 푓 푎 (0)푎 (0)
+ 푓 푎(0)푓 푎 (0)푎 (0)푓 푎 (0)푎 (0)푓 푎 (0)푏 (0)
+ 푓 푎 (0)푎(0)푏(0)푓 푏 (0)푏 (0), 
 
푏(푡) = 푔 푏(0) + 푔 푎(0) + 푔 푏 (0)푏 (0) + 푔 푏(0) +
푔 푏 (0)푏 (0) + 푔 푏 (0)푏 (0) + 푔 푎 (0)푏 (0) +
푔 푏 (0)푏(0)푎(0) + 푔 푎 (0)푎 (0).                                            (3) 
 
The parameters 푓 (푖 = 1,2, … . ,9) and 푔 (푖 = 1,2, … … ,9) are: 

푓 (푡) = 푔∗(푡) = 푒
Δ

, 푓 (푡) = −푔∗(푡) =
Δ
퐺(푡)푓 (푡), 

푓 (푡) = −푔∗(푡) = −
푖휅푡
2 푓 (푡),푓 (푡) = 푔∗(푡)

=
푖휀 푡
4Δ휇 −

휀
4Δ휇 퐺(푡) 푓 (푡), 

푓 (푡) = 푔∗(푡) = − 푓 (푡), 푓 (푡) = 푔∗(푡) = − 푓 (푡), 

푓 (푡) = 푔∗(푡) = −
푖휅휀푡
4Δ휇 −

휅휀
4Δ휇 퐺∗(푡) 푓 (푡), 

푓 (푡) = 푔∗(푡) = −
푖휅휀푡
2Δ휇 +

휅휀
2Δ휇 퐺(푡) 푓 (푡), 

푓 (푡) = 푔∗(푡) =
Δ
푒 Δ −

Δ
퐺(푡) 푓 (푡).              (4) 

 
where: 퐺(푡) = (1 − 푒 Δ ). Deriving the above solutions we 
consider up to the second order in 휅,휀 with the restriction 
휅푡 < 1 푎푛푑 /표푟휀푡 < 1 to obey perturbation theory. We use 
these solutions to study the higher-order intermodal 
antibunching in the two-mode BECs system. 
 
Higher Order Intermodal Antibunching 
To investigate the higher order intermodal antibunching, we 
consider that both the two modes are initially coherent. So, the 
initial composite coherent state of the system will be: 
 
|ψ(0)⟩ = |훼⟩ ⊗ |훽⟩.                 (5) 
 
Where |훼⟩and |훽⟩ are Eigen states of 푎 and 푏 respectively. 
 
The Eigen value equations of the field operator 푎(0) operating 
on the composite coherent state |ψ(0)⟩ is: 
 
푎(0)|ψ(0)⟩ = α|훼⟩ ⊗ |훽⟩.               (6) 
 
Where the complex number α  is the eigen value for the field 
operator operator 푎(0) operating on composite state |ψ(0)⟩. 
Similarly the eigenvalue for the field operator 푏(0) operating on 
composite state |ψ(0)⟩ is 훽. 
 
C. T. Lee introduced the concept of higher-order antibunching 
in photon statistics19. In order to investigate the 푛 order 
antibunching in two-mode BEC, we use the following 
criterion20. 
〈푎 (푡) 푎(푡) 푏 (푡) 푏(푡) 〉 − 〈푎 (푡)푎(푡)〉 〈푏 (푡)푏(푡)〉 < 0    (7) 
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where: 푛 is the positive integer and 푛 > 1 gives the higher 
order. Now using (3), (4), (5) and (7) we obtain the analytical 
expression for higher order intermodal antibunching which is  
 
〈푎 (푡) 푎(푡) 푏 (푡) 푏(푡) 〉 − 〈푎 (푡)푎(푡)〉 〈푏 (푡)푏(푡)〉  
 = 푛푓∗푓 훼∗|훼| ( )|훽| 훽 + 훼∗|훼| |훽| ( )훽 + 푐. 푐.  (8) 
 
In order to get the flavour of the equation (8), we plot the right 
hand side of the equation (8) with respect to the dimensional 
time 휅t. The negative region of Figure-2(a) illustrate the inter-
modal antibunched state of two-mode BECs system and the 
inter-modal state oscillate between classical (bunching) and 
nonclassical (antibunching) regions.  
 
It is clear from Figure-2(b) that the signature of the 
nonclassicality depends on the particular value of  Δ휇

휅 
irrespective the order. So, the signature of antibunching can be 
manipulated with the chemical potential difference between the 
modes. The depth of antibunching increases with Δ휇 휅 and/or 
휀 휅⁄  which is shown in Figures-2(b) and 2(c) respectively. So, 
the degree of antibunching can be manipulated with the 
chemical potential difference and/or single-atom tunnelling 
amplitude between the modes.  
 
All three plots of Figure-2 show that the amount of 
nonclassicalities increases with the order. So, for weak 
nonclassical effects which is difficult to detect using normal 
order (n=1), can easily detectable by means of higher order 
criteria. The signature of nonclassicalities is independent of 
order number as all the orders represent the same physical 
system. 
 
Conclusion 
Heisenberg's equations of motion involving operators for two 
mode BECs system are solved analytically using perturbative 
Sen-Mandal technique. These solutions are utilized to 
investigate the higher order antibunching for two mode BECs 
system.  
 
It is reported that the depth of antibunching increases with the 
order which enable us to detect weak nonclassicalities. It is 
interesting that the amount of nonclassicality can be 
manipulated with the magnitude of the interaction constants and 
chemical potential difference between the modes. As the two-
mode 
 
BECs system is experimentally realizable, our result reported 
here can be verified experimentally and can apply in quantum 
information processing. Hamiltonian similar to the present work 
is also appear in optical systems15-19. Thus, the methodology 
adopted here may also be used in quantum optical systems to 
study the higher order photon antibunching. 

 
(a) 

 
(b) 

 
(c) 

Figure-2 
Plot of right hand side of Equation 8 with, (a) rescaled 

interaction time 휿풕 for 휶 = 휷 = ퟏ,휿 = ퟏퟎ 푯풛,휺 =
ퟓퟎퟎ 푯풁and 횫흁 = ퟕퟎퟎퟎ 푯풛, (b) 횫흁 휿 for 휶 = 휷 = ퟏ,휿 =
ퟏퟎ 푯풛,휺 = ퟓퟎퟎ 푯풁 and 휿풕 = ퟎ.ퟎퟎퟎퟓ, (c) 휺 휿⁄  for 휶 = 휷 =
ퟏ,휿 = ퟏퟎ 푯풛, 횫흁 = ퟕퟎퟎퟎ 푯풁 and 휿풕 = ퟎ.ퟎퟎퟓ. The smooth 
blue line, dashed green line and the dot-dashed red line are 

for n = 1; n = 2; n = 3 respectively 
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