

Research Journal of Recent Sciences _____ Vol. **5(9),** 45-50, September (**2016**)

Existence of Solutions for Fractional Differential Equation with Nonlocal Boundary Condition

R. Prahalatha^{1*} and C.V.R. Harinarayanan²

¹Department of Mathematics, Karpagam University, Coimbatore, India ²Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai - 622 001, India prahalathav@gmail.com

Available online at: www.isca.in, www.isca.me

Received 4th January 2016, revised 5th August 2016, accepted 25th August 2016

Abstract

By using standard Riemann-Liouville differentiation and Leray- Shauder theory, existence of non negative solutions for fractional differential equation with global boundary condition $D_{0+}^b v(d_{01}) + s(d_{01}) g(d_{01}, v(d_{01})) = 0$, $0 < d_{01} < 0.99$, v(0)=0, $v(0.99) = \sum_{h=1}^{\infty} b_h v(\eta_h)$ is considered, here $b \in (1,2]$ is a real number, the standard Riemann-Liouville differentiation is D_{0+}^b , and $\eta_h \in (0,0.99)$, $b_h \in [0,\infty)$ with $\sum_{h=1}^{\infty} b_h \eta_h^{b-1} < 1$, $s(d_{01}) \in C([0,1],[0,\infty))$, $g(t,v) \in C([0,1] \times [0,\infty),[0,\infty))$.

Keywords: Fixed point theorem, Leray-Shauder theory, standard Riemann-Liouville differentiation, fractional calculus theory, Fractional differential equations and Nonlocal boundary condition.

Introduction

The ardent improvement of an exposition of the abstract principles of a science of art Fractional Calculus has been induced by Fractional Differential Equations. The application of such constructions in the field of science such as Dynamics, Statics, Bio-Chemistry, Chemistry and Engineering¹⁻⁶. Many things in the world are always changing in fraction of time which is one factor in deciding the nature of the particular thing.

Solving a Differential Equation of integral order is a well known process for all of us. There was an ambiguity while solving Differential Equation whose order is not an integral that is a fraction. To avoid such an ambiguity, there was an invention of how to solve a Fractional Differential Equation.

Many articles and books on Fractional Calculus are consecrated to the solution of Linear Initial Fractional Differential Equations in terms of some specific functions⁶⁻⁸. At present many papers have been revealed for proving existence of non negative solutions for the initial Fractional Differential Equations with global boundary conditions using non linear analysis⁹⁻¹⁷.

Not long ago, the existence of positive solutions of nonlinear fractional differential equation has been revealed by Bai and L \ddot{u}^{15} .

$$D_{0+}^{b} v(d_{01}) + g(d_{01}, v(d_{01})) = 0, 0 < d_{01} < 0.99,$$
(1.1)

v(0) = v(0.99) = 0,

here $b \in (1, 2]$ is a non imaginary number, the standard Riemann-Liouville differentiation is D_{0+}^b and $g : [0,1] \ge [0,\infty)$ $\rightarrow [0,\infty)$ is continuous.

Here existence of non negative solutions for fractional differential equation with global boundary condition will be proved by taking the following FDE

$$D_{0+}^{p} v(d_{01}) + s(d_{01} t) g(d_{01}, v(d_{01})) = 0, 0 < t < 0.99,$$
(1.2)
$$v(0) = 0, \qquad v(0.99) = \sum_{h=1}^{\infty} b_{h} v(\eta_{h),})$$

here $b \in (1, 2]$ is a non imaginary number, the standard Riemann-Liouville differentiation is D_{0+}^b , and $\eta_h \in (0, 0.99), b_h \in [0, \infty)$ with

$$\begin{split} &\sum_{h=1}^{\infty} b_h \eta_h^{b-1} < 1, \ s(d_{01}) \in C([0,1], \ [0,\infty)), \\ &g(d_{01}, v) \in C\left([0,1] \ \ x \ [0,\infty), \ [0,\infty)\right). \end{split}$$

The following conditions will be assumed in the whole paper for proving the main result:

$$(J1) \eta_{h} \in (0,1), b_{h} \in [0,\infty) \text{ are constants with?}$$

$$\sum_{h=1}^{\infty} b_{h} \eta_{h}^{\alpha-1} < 0.99,$$

$$(J2)s(d_{01}) \in C([0,1], [0,\infty)), s(d_{01}) \neq 0 \text{ on } [a,b] \subset (0,1),$$

$$(J3) g(d_{01}, v) \in C([0,1], x [0,\infty), [0,\infty)).$$

Remark 1. 1. Existence of non negative solutions for problem (1.2) have not been derived. We have to derive it for (1.2).

The Preliminary Lemmas

The necessary conditions of definitions from fractional calculus theory are as follows: Definition 2. 1. A function $f: (0, \infty) \rightarrow \mathbb{R}$ whose fractional integral of order b>0 is written as

follows
$$I_{o+}^{b} f(d_{01}) = \frac{1}{\Gamma(b)} \int_{0}^{d_{01}} (d_{01} - s)^{b-1} f(s) \, ds,$$
 (2.1)

where the side in right is point wise defined on $(0, \infty)$.

Definition 2.2. A function $f: (0, \infty) \rightarrow \mathbb{R}$ whose fractional derivative of order b > 0 is written as follows

$$D_{0+}^{b}f(d_{01}) = \frac{1}{\Gamma(n_{1}-b)} \left(\frac{d}{dt}\right)^{n_{1}} \int_{0}^{t} \frac{f(s)}{(t-s)^{b-n_{1}+1}} ds, \qquad (2.2)$$

here $n_1 = [n_0] + 1$, such that the side in right is point wise defined on $(0, \infty)$.

Definition 2. 3. Let $\phi : Q \rightarrow (0, \infty)$ be a positive continuous concave functional on a cone Q of a real Banach space E, given that ϕ is continuous and

$$\phi(tx_1 + (1-t)y_1) \ge t\phi(x_1) + (1-t)\phi(y_1), \tag{2.3}$$

For all x_1 , $y_1 \in Q$ and $0 \le t \le 1$

Example 2. 4. By fixing $\mu > -1$,

$$D_{0+}^{b}t^{\mu} = \frac{\Gamma(\mu+1)}{\Gamma(\mu-b+1)}t^{\mu-b},$$
(2.4)

Specifically giving $D_{0+}^{b}t^{b-r} = 0$, r=1,2,...,J, where J is the smallest integer greater than or equal to b.

Using the above basic definitions and Lemma, we can obtain the following statements.

Lemma 2. 5 Assume $v \in N(0,1) \cap M(0,1)$ such that b > 0, then the fractional differential equation

$$D_{0+}^b v(t) = 0$$

has $v(d_{01}) = N_1 d_{01} b_{-1} + N_2 d_{01} b_{-2} + \dots + N_J d_{01} b_{-J}$, $N_k \in \mathbb{R}, k=1,2,\dots,J$, for the smallest integer J not less than or equal to b, which is a unique solution. (2.5)

Lemma 2. 6. Let $v \in N(0,1) \cap M(0,1)$ be assumed with a fractional derivative of order b>0. Then,

$$I_{0+}^{b}D_{0+}^{b}v(d_{01}) = v(d_{01}) + N_{1}d_{01}^{b-1} + N_{2}d_{01}^{b-2} + \dots + N_{J}d_{01}^{b-J}, \quad (2.6)$$

for some $N_k \in R$, k=1, 2, ..., J.

Lemma 2. 7. Assume $f \in N[0,1]$ and $b \in (1,2]$, the solution^[15] of

 $D_{0+}^{b}v(d_{01}) + f(d_{01}) = 0, 0 < d_{01} < 1$, which is unique (2.7) v(0) = v(1) = 0

is

$$v(d_{01}) = \int_0^1 H(d_{01}, m_1) f(m_1) dm_1, \qquad (2.8)$$

Where

$$H(d_{01}, m_1) = \begin{cases} \frac{[d_{01}(1-m_1)]^{b^{-1}} - (d_{01}-m_1)^{b^{-1}}}{\Gamma(b)}, & 0 \le m_1 \le d_{01} \le 1, \\ \frac{[d_{01}(1-m_1)]^{b^{-1}}}{\Gamma(b)}, & 0 \le d_{01} \le m_1 \le 1, \end{cases}$$
(2.9)

Lemma 2.8 Suppose (J1) Holds. Given $f \in N$ where $0 \le N \le 1$ and $1 < b \le 2$, the unique solution of

$$D_{0+}^{\nu}v(d_{01}) + f(d_{01}) = 0, \ d_{01} \in (0,1),$$

$$v(0) = 0, \quad v(1) = \sum_{h=1}^{\infty} b_h v(\eta_h)$$
(2.10)

$$v(d_{01}) = \int_0^1 H(d_{01}, m_1) f(m_1) dm_1 + B(m_1) d_{01}^{b-1}, \qquad (2.11)$$

Where
$$H(d_{01}, m_1) = \begin{cases} \frac{[d_{01}(1-m_1)]^{b^{-1}} - (d_{01}-m_1)^{b^{-1}}}{\Gamma(b)}, & 0 \le m_1 \le d_{01} \le 1, (2.12) \\ \frac{[d_{01}(1-x)]^{b^{-1}}}{\Gamma(b)}, & 0 \le d_{01} \le m_1 \le 1, \end{cases}$$

$$B(f) = \frac{\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, m_1) f(m_1) dm_1}{1 - \sum_{h=1}^{\infty} b_h \eta_h^{b-1}}$$

Proof: Using Lemmas 1.2 and 1.3, the following will be proved

$$v(d_{01}) = \int_{0}^{1} H(d_{01}, m_{1}) f(m_{1}) dm_{1} = N_{1} d_{01}^{b-1} + N_{2} d_{01}^{b-2}$$
(2.13)
Because

$$\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, m_1) \, dm_1 = \frac{\sum_{h=1}^{\infty} b_h \eta_h^{b-1} (1-\eta_i)}{b \Gamma(b)}, b_h \eta_h^{b-1} (1-\eta_h) < b_h \eta_h^{b-1}$$
(2.14)

applying (J1), $\sum_{h=1}^{\infty} b_h \eta_h^{b-1} (1-\eta_h)$ converges. and so $\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, x) dm_1$ is converging. f(d_{01}) is a function which is

continuous on [0,1], so $\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, m_1) f(m_1) dm_1$ also converges. By v(0) = 0, v(0.99) = $\sum_{h=1}^{\infty} b_h v(\eta_h)$, there are N₂ = 0, N₁ = $\left[\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, m_1) f(m_1) dm_1\right] / (1 - \sum_{h=1}^{\infty} b_h \eta_h^{b-1})$. hence

$$v(d_{01}) = \int_0^1 H(d_{01}, m_1) f(m_1) dm_1 + B(f) d_{01}^{b-1}, \quad (2.15)$$

Hence we have the proof

$$B(f) = \frac{\sum_{h=1}^{\infty} b_h \int_0^1 H(\eta_h, m_1) f(m_1) dm_1}{1 - \sum_{h=1}^{\infty} b_h \eta_h^{b-1}}$$

Lemma 2. 9. The function $H(d_{01}, m_1)$ defined by 2.9 satisfies the following conditions: i. $H(d_{01}, m_1) > 0$, for $d_{01}, m_1 \in$ (0,1), ii. there exists a positive function $\gamma \in N(0,1)$ such that $\min_{\substack{(0.25) \leq m_1 \leq (0.75)}} H(d_{01}, m_1) \geq \gamma(m_1), \qquad \max_{\substack{0 \leq d_{01} \leq 1}} H(d_{01}, m_1) =$ $\gamma(m_1) H(m_1, m_1), 0 < m_1 < 1.$

Lemma 2. 10. Assuming M is a Banach space^[18], let $Q \subseteq M$ be a cone and Ψ_1, Ψ_2 two sets which are open and bounded belongs to M with $0 \in \Psi_1 \subset \Psi_2$ in case of A : Q $\cap (\overline{\Psi}_2 \setminus \Psi_1) \rightarrow Q$ is a operator which is completely continuous in order to have either

(i) $||Az_1|| \le ||z_1||, z_1 \in Q \cap \partial \Psi_1 \text{ and } ||Az_1|| \ge ||z_1||, z_1 \in Q \cap \partial \Psi_2 \text{ or}$ (ii) $||Az_1|| \ge ||z_1||, z_1 \in Q \cap \partial \Psi_1 \text{ and } ||Az_1|| \le ||z_1||, z_1 \in Q \cap \partial \Psi_2 \text{ or}$

holds.

Then, there is a fixed point for A in Q $\cap (\overline{\Psi_2} \setminus \Psi_1)$

Lemma 2.11. Having a cone Q in non imaginary Banch space $M^{[19]}$, $Q_c = \{ z_1 \in Q \mid ||z_1|| \le c \}$, θ a concave functional which is continuous with non negativity on Q for which $\theta(z_1) \le ||z_1||$, for all $z_1 \in \overline{Q}_c$, and $Q(\theta, p, q) = \{z \in Q \mid p \le \theta(z_1), ||z_1|| \le q\}$. suppose for a completely continuous function

A : $\overline{Q}_c \to \overline{Q}_c$, there exist constants $0 < p_1 < {\bf p} < {\bf q} \le q_1 {\bf c}$ such that

$$\begin{split} & (K1) \left\{ z_1 \in Q \left(\theta, \, p, \, q \right) \left| \theta \left(z_1 \right) > p \right\} \neq \not 0 \text{ and } \theta \left(A z_1 \right) > p, \, z_1 \in Q(\theta, \, p, \, q), \\ & (K2) \left\| A z_1 \right\| \leq p_1, \text{ for } z_1 \leq p_1, \\ & (K3) \left(A A z_1 \right) > p \text{ for } z_1 \in Q(\theta, \, p, \, q_1) \text{ with } \left\| A z_1 \right\| > q. \end{split}$$

Therefore, A has at least three fixed points z_{11}, z_{22}, z_{33} with

$$||z_{11}|| < p_1, p < \theta(z_{22}), p_1 < ||z_{33}||, \theta(z_{33}) < p.$$

Note 2.12. If there holds $q = q_1$, then $(K1) \{z_1 \in Q(\theta, p, q) | \theta(z_1) > p\} \neq \emptyset$ and $\theta(Az_1) > p, z_1 \in Q(\theta, p, q)$, implies condition $(K3) \theta(Az_1) > p$ for $z_1 \in Q(\theta, p, q_1)$ with $||Az_1|| > q$.

The Main Results

Assume M = N [0,1] has furnished with the command $v \le v$ if $v(d_{01}) \le v(d_{01})$ such that $d_{01} \in [0,1]$, and the norm with maximum, $||v|| = \max_{0 \le d_{01} \le 1} |v(d_{01})|$. Name the cone Q $\subset M$ by $Q = \{v \in M | v(d_{01}) \ge 0\}$.

Define the concave functional θ with positive continuous on the cone Q has explained by

$$\theta(v) = \min_{(0.25) \le t \le (0.75)} v(d_{01}).$$

Lemma 3. 1. Permit J: Q \rightarrow M as a [operator] process ¹⁵ explained by Jv(d_{01}) := $\int_0^1 H(d_{01}, m_1) g(m_1, v(m_1))$ ds, then J: Q \rightarrow Q is completely continuous function so that the process leads to the main result.

Lemma 3. 2. Define A: Q \rightarrow M be the operator defined by Av(d_{01}):= $\int_{0}^{1} H(d_{01}, m_1) s(m_1) g(m_1, v(m_1)) dm_1 + B(s(.) g(., v(.))) d_{01}^{b-1}$, (3.1) then the operator A: Q \rightarrow Q is completely continuous.

Proof: We can prove this using J : Q \rightarrow M as a [operator] process¹⁵ explained by Jv(d_{01}) := $\int_0^1 H(d_{01}, m_1) g(m_1, v(m_1))$ ds, then J: Q \rightarrow Q is completely continuous Denote

$$E = \left(\int_{0}^{1} H(m_{1}, m_{1}) s(m_{1}) dm_{1} + \frac{\sum_{h=1}^{\infty} b_{h} \int_{0}^{1} H(\eta_{h}, m_{1}) s(m_{1}) dm_{1}}{1 - \sum_{h=1}^{\infty} b_{h} \eta_{h}^{b-1}}\right)^{-1} \quad (3.2)$$
$$F = \left(\int_{0.25}^{0.75} \gamma(s) H(m_{1}, m_{1}) s(m_{1}) dm_{1}\right)$$

Theorem 3.3. consider (J1)-(J3) hold, and there be two non negative constants $r_2 > r_1 > 0$ such that $g(d_{01}, v) \le Er_2$, for every d_{01} that is $0 \le d_{01} \le 1$, $v \in [0, r_2]$,

 $(d_{01}, v) \ge E r_1$, for every d_{01} lies between 0 and 1, $v \in [0, r_1]$, here E, F is explained in (3.2), therefore there exists one or more solutions for problem (1.2) that is v such that $r_1 \le |v| \le r_2$.

(3.6)

Proof: Since by lemmas 2.8 and 3.2 A:Q \rightarrow Q is entirely **Example 3.4.** Consider the problem (1.2) if and only if the operator equation $v = v(d_{01})$ for the problem (1.2) if and only if the operator equation v = Av has been solved by v. In case of applying the following in order to have either (i) $||Az_1|| \le ||z_1||$, $z_1 \in Q \cap \partial \Psi_1$ and $||Az_1|| \ge ||z_1||$, $z_1 \in Q \cap \partial v(\Psi_2 = 0)$; $v(1) = \sum_{h=1}^{\infty} b_h v(\eta_h)$, (ii) $||Az_1|| \ge ||z_1||$, $z_1 \in Q \cap \partial \Psi_1$ and $||Az_1|| \le ||z_1||$, $z_1 \in Q \cap \partial \Psi_2$ or

holds. We need the two steps as follows:

Where :
$$\sum_{h=1}^{\infty} b_h \eta_h^{1/2} = \frac{2}{10}$$

Step 1: Put
$$\Psi_2 = \{ v \in Q \mid ||v|| \le r_2 \}$$
. Here $v \in \partial \Omega_2$, where $0 \le v(t) \le r_2$ for every $d_{01}, 0 \le d_{01} \le 1$.

Hence we have

$$\|Av\| \leq \int_0^1 H(m_1, m_1) s(m_1) g(m_1, v(m_1)) dm_1 + \frac{\sum_{h=1}^\infty b_i \int_0^1 H(\eta_h, m_1) s(m_1) g(m_1, v(m_1)) dm_1}{1 - \sum_{h=1}^\infty b_h \eta_h^{b-1}}$$

$$\leq Er_{2}\left[\int_{0}^{1}H(m_{1},m_{1}) s(m_{1})dm_{1} + \frac{\sum_{h=1}^{\infty}b_{h}\int_{0}^{1}H(\eta_{h},m_{1}) s(m_{1}) dm_{1}}{1 - \sum_{h=1}^{\infty}b_{h}\eta_{h}^{b-1}}\right] (3.2)$$

$$= r_2 = \|v\|.$$

Therefore, $||Av|| \le ||v||, v \in Q \cap \partial \Psi_2.$

Step 2: Let $\Psi_1 = \left\{ v \in Q \mid ||v|| \le r_1 \right\}$. For $v \in \partial \Psi_1$, and $0 \le v(d_{01}) \le r_1$ for every $d_{01} \in [0,1]$. Since by (2) in assumption, for $d_{01} \in [0.25, 0.75]$, we have

$$\begin{aligned} \|Av\|(d_{01}) &= \int_{0}^{1} H(d_{01}, m_{1}) s(m_{1}) g(m_{1}, v(m_{1})) dm_{1} + \frac{t^{b+1} \sum_{h=1}^{\infty} b_{h} \int_{0}^{1} G(\eta_{h}, m_{1}) s(m_{1}) g(m_{1}, v(m_{1})) dm_{1}}{1 - \sum_{h=1}^{\infty} b_{h} \eta_{h}^{b-1}} \\ &\geq \int_{0}^{1} \gamma(m_{1}) H(m_{1}, m_{1}) s(m_{1}) g(m_{1}, v(m_{1})) dm_{1} \qquad (3.4) \\ &= r_{1} = \| v \|. \end{aligned}$$

therefore, $||Av|| \ge ||v||, v \in Q \bigcap \partial \Psi_1$ (3.5)

since, there exists a positive function $\gamma \in N(0,1)$ such that

$$\min_{\substack{(0.25) \le m_1 \le (0.75)}} \operatorname{H}(d_{01}, m_1) \ge \gamma(m_1), \quad \max_{0 \le d_{01} \le 1} \operatorname{H}(d_{01}, m_1) = \gamma(m_1) \operatorname{H}(m_1, m_1), 0 < m_1 < 1.$$

therefore there exists one or more solutions for problem (1.2) that is v such that $r_1 \le |v| \le r_2$.

Hence proved.

Calculating E and F by using the above basics, we have the values $E \ge 1, 4, F \approx 13.665$. Selecting $r_1=(1/69), r_2=(10/11),$

$$g(d_{01}, v) = v^{2} + \frac{\sin d_{01}}{4} + \frac{2}{10} \le 1.2199 \le Er_{2} \ (d_{01}, v) \in [0, 1] \times [0, \frac{10}{11}],$$
(3.7)

$$g(d_{01}, v) = v^2 + \frac{\sin d_{01}}{4} + \frac{2}{10} \ge \frac{2}{10} \ge Fr_1, \quad (d_{01}, v) \in [0, 1] \times [0, \frac{1}{69}]$$

Hence, there exists one or more non negative solutions v for problem (3.6) using statement of (3.3) such that (1/69) $\leq ||v|| \leq (10/11)$.

Theorem 3.5. Let (J1)-(J3) hold, and there be constants $0 < p_1 < p < q_1$ in such a way that the consideration holds as given below:

(A1) g (t, v) < Ea for (t, v) $\in [0,1]x[0,a]$ (A2) g (t, v) $\geq Fb$ for $(t,v) \in [1/4,3/4]x[b,c]$ (A3) g(t, v) $\leq Ec$ for $(t,v) \in [0,1]x[0,x]$; where E, F is defined in (*).

Then, there must be three or more non negative solutions arbitrarily named $v_1, v_2, v_3^{[20]}$ for the problem (1.2)

$$\begin{split} \|v_1\| < p_1, \quad \min_{0.25 \le d_{01} \le 0.75} |v_2| < \|v_2\| \le q_1, \quad p_1 < \|v_3\| \le q_1, \\ \min_{0.25 \le d_{01} \le 0.75} |v_3| < p \end{split}$$

$$(3.8)$$

Proof: Since the function $H(d_{01}, m_1)$ satisfies the following conditions: i. $H(d_{01}, m_1) > 0$, for $d_{01}, m_1 \in (0,1)$, ii. there exists a positive function $\gamma \in N(0,1)$ such that

$$\begin{split} & \min_{(0.25) \leq m_1 \leq (0.75)} \mathrm{H}(d_{01}, m_1) \geq \gamma(m_1), \quad \max_{0 \leq d_{01} \leq 1} \mathrm{H}(d_{01}, m_1) = \\ & \gamma(m_1) \mathrm{H}(m_1, m_1), 0 < m_1 < 1. \end{split}$$
 If

 $v \in \overline{Q}_c$, then $||v|| \le q_1$. Consideration (A3) implies $g(d_{01}, v(d_{01})) \le Eq_1$ for $0 \le d_{01} \le 1$.

Similarly,

$$\begin{aligned} \left\| Av \right\| &= \max_{\substack{0 \le d_{01} \le 1}} \\ & \int_{0}^{1} H(d_{01}, m_{1}) s(m_{1}) g(m_{1}, v(m_{1})) dm_{1} + \frac{d_{01}^{b-1} \sum_{h=1}^{\infty} b_{h} \int_{0}^{1} H(\eta_{h}, m_{1}) s(m_{1}) g(m_{1}, v(m_{1})) dm_{1}}{1 - \sum_{h=1}^{\infty} b_{h} \eta_{h}^{b-1}} \end{aligned} \end{aligned}$$

$$\leq \int_{0}^{1} H(m_{1},m_{1})s(m_{1})g(m_{1},v(m_{1}))dm_{1} + \frac{d_{01}^{b-1}\sum_{h=1}^{\infty}b_{h}\int_{0}^{1}G(\eta_{h},m_{1})s(m_{1})g(m_{1},v(m_{1}))dm_{1}}{1-\sum_{h=1}^{\infty}b_{h}\eta_{h}^{b-1}} \\ \leq \left[\int_{0}^{1} H(m_{1},m_{1})s(m_{1})dm_{1} + \frac{\sum_{h=1}^{\infty}b_{h}\int_{0}^{1}H(\eta_{i},m_{1})s(m_{1})dm_{1}}{1-\sum_{h=1}^{\infty}b_{h}\eta_{h}^{b-1}}\right] \parallel v \parallel \\ \leq \left\| v \right\|$$
(3)

That is, A: $\overline{Q}c \to \overline{Q}c$. Similarly for $v \in \overline{Q}_{p_1}$, the consideration (A1) implies $g(d_{01}, v(d_{01})) < Mp_1$, $0 \le d_{01} \le 1$. From that condition (K2) is satisfied in Lemma 2.11.

Assume $v(d_{01}) = (p+q_1)/2$, $0 \le d_{01} \le 1$ to satisfy condition (K1) of Lemma 2.11. It is easy to see that $v(d_{01}) = (p+q_1)/2$, $\in Q(\theta, p, q_1), \theta(v) = (\theta(p+q_1))/2 > p_1$, and consquently, $\{v \in Q(\theta, p, q) \mid \theta(v) > p\} \ne \emptyset$ Hence, if $v \in Q(\theta, p, q_1)$,

 $\begin{aligned} & then \ p \leq v(d_{01}) \leq q_1 \ for \ 0.25 \leq d_{01} \leq 0.75. \\ & \text{From condition (A2), we have } f\left(d_{01}, v\left(d_{01}\right)\right) Fp \\ & \text{for } 0.25 \leq d_{01} \leq 0.75. \\ & (\text{ie}) \ \Theta(Av) = \min_{0.25 \leq d_{01} \leq 0.75} \left| Av(d_{01}) \right| \\ & \geq \int_{0}^{1} \gamma(m_1) H\left(m_1, m_1\right) s(m_1) g\left(m_1, v\right) \right) dm_1 \\ & > Fp \int_{0.25}^{0.75} \gamma(m_1) H\left(m_1, m_1\right) s(m_1) dm_1 \\ & = p = ||v|| \\ & \Theta(Av) > p, \ for \ every \ v \in Q(\Theta, p, q_1). \end{aligned}$ (3.10)

Which proves first condition of Lemma 2.11.

Hence, there exists three non negative solutions namely v_1, v_2 and v_3 or more for the boundary value problem (1.2). From that we have

$$\begin{split} \left\| v_1 \right\| &< p_1, \quad \min_{0.25 \le d_{01} \le 0.75} \left| v_2 \right| < \left\| v_2 \right\| \le q_1 \ , \ p_1 < \left\| v_3 \right\| \le q_1, \\ \min_{0.25 \le d_{01} \le 0.75} \left| v_3 \right| < p \end{split} \tag{3.11}$$

Hence the proof.

Example 3.6. Consider the problem (3.12) given below

$$D_{0+}^{3/2} v(d_{01}) + g(d_{01}, v) = 0, 0 < d_{01} < 1$$

$$v(0) = 0, v(1) = \sum_{h=1}^{\infty} b_h v(\eta_h)$$
(3.12)

Where
$$\sum_{h=1}^{\infty} b_h \eta_h^{\frac{1}{2}} = \frac{1}{5}$$
,

$$g(t, v) = \begin{cases} \frac{(t)}{39} + 13v^2, v \le 1, \\ 14 + (\frac{1}{39}) + v, v > 1 \end{cases}$$
(3.13)

We have E

$$\geq 1.4, F \approx 13.665. \text{ Choosing } = (1/13), \ p = 1, \ q_1 = 35, \ there \ hold$$

$$g(d_{01}, v) = \frac{d_{01}}{39} + 13v^2 \leq 0.098 \leq Ep, \ (d_{01}, v) \in [0, 1]x \left[0, \frac{1}{13}\right]$$

$$g(d_{01}, v) = 12 + \frac{d_{01}}{40} + v \geq 14.025 \geq Fb \approx 13.7, \ (d_{01}, v) \in \left[\frac{1}{4}, \frac{3}{4}\right] x [1, 36]$$

$$g(d_{01}, v) \leq 12 + \frac{d_{01}}{39} + v \leq 48.136 \leq Ec \approx 50.3 \ (d_{01}, v) \in [0, 1]x [0, 36]$$
(3.14)

Hence the problem has three non negative solutions v_1, v_2 and v_3 by considering the followings:

$$\begin{split} & \max |v_1(d_{01})| < \frac{1}{13}, \quad 1 < \frac{\min |v_2(d_{01})|}{(1/4) \le d_{01} \le (3/4)} \max |v_3(d_{01})| \le 36, \quad (3.15) \\ & \frac{1}{13} < \frac{\max}{0 \le d_{01} \le 1} |v_3(d_{01})| \le 36, \quad \frac{\min |v_3(d_{01})|}{(1/4) \le d_{01} \le (3/4)} < 1 \\ & \text{Hence the proof.} \end{split}$$

Conclusion

(3.9)

In this paper, non negative solutions for Fractional Differential Equations with global boundary conditions have been derived and various examples were discussed by applying the main result.

References

- 1. A.M.A. El-Sayed (1998). Nonlinear functional-differential equations of arbitrary orders. *Nonliner Analysis: Theory, Methods & Applications*, 33(2), 181-186.
- **2.** Kilbas A.A., Samko S.G., and Marchery O. I. (1993). Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon, Switzerland.
- **3.** Kilbas A.A. and Trujillo J.J. (2002). Differential equations of fractional order: methods, results and problems. II. *Applicable Analysis*, 81, (2), 435-493.
- 4. Kilbas A.A. and Trujillo J.J. (2001). Differential equations of fractional order: methods results and problems. I. *Applicable Analysis.*, 78(1-2), 153-192.

- 5. Miller K.S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York, NY, USA.
- 6. Podlubny I. (1999). Fractional Differential Equations. 198, Academic Presas, San Diego, Calif, USA.
- 7. Miller K.S. (1993). Fractional differential equations. *Journal of Fractional Calculus*, 3, 49-57.
- 8. Podlubny I. (1994). The Laplace transform method for liner differential equations of the fractional order. UEF02-94, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Solvakia.
- **9.** Babakhani A. and Daftardar Gejii V. (2003). Existence of positive solutions of nonlinear fractional differential equations. *Journal of Mathematical Analysis and Applications*, 278(2), 432-442.
- **10.** Delbosco D. (1994). Fractional calculus and function spaces. *Journal of Fractional Calcululs*, 6, 45-53.
- **11.** Delbosco D. and Rodino L. (1996). Existence and uniqueness for a nonlinear fractional differential equation. *Journal of Mathematical Analysis and Applications*, 204(2), 609-625.
- 12. Daftan Gejji V. and Babakhari A. (2004). Analysis of a system of fractional differential equation. *Journal of Mathematical Analysis and Applications*, 293(2), 511-522.
- **13.** Zhang S.Q. (2000). The Existence of positive solution for a nonlinear fractional differential equation. *Journal of Mathematical Analysis* and Applications, 252, (2), 804-812.

- **14.** Zhang S. Q. (2003). Existence of positive solution for some class of nonlinear fractional differential equation. *Journal of Mathematical Analysis* and Applications, 278(1), 136-148.
- **15.** Bai Z.B. and Lu H. (2005). Positive solutions for boundary value problem of nonlinear fractional differentrial equations. *Journal of Mathematical Analysis and Applications*, 311(2), 495-505.
- **16.** Bai Z. B. (2010). On Positive solutions of a nonlocal fractional boundary value problem, differential. *Nonlinar Analysis Theory, Methods & Application*, 72(2), 916-924.
- Wang Y.Q., Liu L.s., and Wu Y.H. (2011). Positive solutions for a nonlocal fractional differential equation. *Nonlinear Analysis Theory, Methods & Applications*, 74(11), 3599-3605.
- **18.** Krasnoselskii M.A. (1984). Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groninen, The Netherelands.
- **19.** Leggett R.W. and Williams L.R. (1979). Multiple positive fixed points of nonlinear operators on ordered Banach spaces. *Indian University Mathematical Journal*, 28(4), 673-688.
- **20.** Gao Hongliang and Han Xiaoling (2011). Existence of Positive Solutions for Fractional Differential Equation with Nonlocal Boundary Condition. *International Journal of Differential Equations*, 2011, 10.