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Abstract 

Present paper shows a numerical assessment to investigate double-clamped micro-beams by considering the Casimir force 

and SQFD resting on strain gradient elasticity theory using GDQ method. The mathematical formulations are considered to 

approximately model the non-linear effects of geometry, electrostatic actuation, and Casimir force on the oscillatory system. 

These equations, in conjunction with boundary conditions, are transformed into dimensionless governing equations and 

boundary conditions with the aim of simplifying numerical simulations. It is concluded that geometric and material 

properties both affect the pull-in characteristics of the polysilicon micro-beam. In particular, it is shown that present 

investigation reveals unexpected influence of the Casimir force on micro-structures. 
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Introduction 

In just a few years from now micro-electro-mechanical systems 

(MEMS) have been continually developed into an endless 

variety of advantages as miniaturization, high accuracy, light 

weight, low in energy consumption, and high reliability
1-4

. 

Although there has been a steady growth in the MEMS 

fabrication technology, MEMS design is known as a difficult 

task. One of the most serious considerations on the use of 

MEMS is pull-in instability
5-6

 which will result from the 

electrostatic-force interaction. In this respect, Hasanyan et al.
7
 

studied pull-in instability in functionally graded (FG) MEMS 

considering heat generated with respect to the electric current. 

They coupled non-linear governing equations, whereas the 

electric conductivity depends on the temperature. In the main, 

their model accounted for pull-in voltage, graduation of material 

properties, and mechanical effects. Moreover, a recent study 

carried out by Jia et al.
8
 claims to show pull-in instability and 

free vibration of poly-SiGe graded micro-beams with a curved 

ground electrode. They considered geometrically non-linear 

deformation, electrostatic and intermolecular force, and axial 

residual stress and then solved the governing equations using 

differential quadrature (DQ) method. 

 

Practically the electrostatic forces are utilized in MEMS on the 

grounds of there is distinctive features such as accuracy and 

stability
9
. To date, there exist many publications in Refs

10-13
 

regarding MEMS which are considered the electrostatic forces. 

 

When a plate moves vicinity to another surface, for instance, in 

effect alternately stretching and squeezing any fluid that may be 

present in free space between the moving plates
14

, Squeeze-

film-damping happens. It is noted that on the basis of the cause 

and effect, sideways motion of the air ends in damping and the 

trapped air also acts as a spring because of its compressibility. 

As a result of this trend, Homentcovschi and Miles
15

 proposed 

viscous damping and spring force in periodic perforated planar 

micro. They also developed a finite element model (FEM) to 

figure out the damping on the cell in the axisymmetric domain. 

 

As for the quantum fluctuations, the Casimir effect is 

categorized as an attractive force between a pair of parallel 

plates
16-17

. In this case, Wang et al.
18

 studied bending and 

vibration of an electrostatically actuated circular micro-plate 

due to the Casimir force to mark out differences of various 

parameters such as initial gap-thickness ratio, pull-in instability, 

and natural frequency. Their study indicated that although the 

Casimir force is on the increase, pull-in parameters decrease 

continuously from their maximum values at critical Casimir 

forces where the device collapses with zero applied voltage. 

 

The study, which shows that strain gradient elasticity effect is 

significant in elastic deformation of small-scale structures, says 

that the Casimir force combined with SQFD shed some light on 

pull-in behaviour of present silicon clamped-clamped micro-

beam. To this end, the governing equations and associated 

boundary conditions are derived and then after being discretized 

by the generalized differential quadrature (GDQ) method, are 

solved numerically. Final results show that pull-in behaviour 

may be significantly affected by the parameters when 

accounting for the full non-linearity. 

 

Strain gradient elasticity theory 

Based on the strain gradient theory
19

, the strain energy U in a 

deformed isotropic linear elastic material occupying region Ω is 
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given by 

   (1) 

in which 

 (2) 

  (3) 

  (4) 

 (5) 

where: ui is the displacement vector, εmm is the dilatation 

gradient vector, �����
���

 is the deviatoric stretch gradient tensor, 

and 	��

  is the symmetric rotation gradient tensor. Likewise, the 

corresponding stress measures defined as
19 

 (6) 

 (7) 

 (8) 

 (9) 

where ���
´  is deviatoric strain, pi, ���

���
, and 
��


  are the higher 

order stresses, k and µ are bulk and shear modulus, respectively, 

and l0, l1, and l2 are additional independent material parameters 

associated with gradients, deviatoric stretch gradients, and 

rotation gradients, respectively. 

 

 
Figure-1 

Schematic configuration of a double-clamped micro-beam 
 

Theoretical formulation 

A double-clamped micro-beam is modelled as an electrode 

beam with a stationary ground electrode underneath as shown in 

Figure-1. The length, width, and thickness of micro-beam are L, 

b, and h, respectively. Also, d denotes the air initial gap. 

 

The Casimir force takes the form of
20 

  (10) 

where h̅ = 1.055 � 10-34 J is Plank’s constant divided by 2�, c = 

3 � 10
8
 ms

-1
 is the speed of light in vacuum, and W is the 

deflection of micro-beam. 

 

The equation of motion of the double-clamped micro-beam 

subjected to the combined effects of electrostatic actuation and 

the Casimir force can be expressed as 

 (11) 

where EI is the flexural rigidity, ρ is density, A = bh is the cross-

sectional area, P is the pressure, and N0 is a constant denoting 

the residual force acting on the micro-beam, respectively. 

Starting with the assumption of isothermal and small pressure 

variation, the SQFD is then given by 

  (12) 

where µ is viscosity of the medium in the gap. The micro-beam 

is subjected to the following boundary conditions 

  (13) 

Then, the pressure boundary conditions for the case shown in 

Figure-1 is 

  (14) 

By introducing the following dimensionless variables 

 (15) 

where Pa is the ambient pressure. Afterwards, upon substitution 

of the dimensionless quantities given in Equation-15 into 

Equations-11 and 12 leads to 

 (16) 

 (17) 

 

in which 

 (18) 
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where ε = 8.854187817620 � 10
-12

 F/m is the permittivity of the 

free space. 

 

Applying the GDQ Method 

Here, the GDQ method
21-22

 is employed to solve the non-linear 

partial differential equations. To this end, by considering 

Equations-16 and 17 one can obtain as 

 

 (19) 

 (20) 

where ���
���

 is the weighting function. In addition, boundary 

conditions can be rewritten as 

 (21) 

 (22) 

It is important to note that the procedure explained above leads 

to a system of 15 (n�m) algebraic equations with the same 

number of unknowns. 

 

Simulation and Discussion 

Consider a clamped-clamped micro-beam made of polysilicon 

subjected to an electrostatic actuation and the Casimir force so 

that the geometric and material properties are listed in Table-1. 

Note that the numerical assessment of Equation-19 is carried out 

until the error norm becomes less than 10
-4

. 

 

Table-1 

Geometric and material properties 

Parameters Values 

Young’s modulus (E) (N/m
2
) 169 · 10

9 

Density (ρ) (kg/m
3
) 2332 

Viscosity (µ) (N/sm
2
) 1.82 · 10

-5 

Length (L) (µm) 400 

Width (b) (µm) 40 

Thickness (h) (µm) 15 

Initial gap (d) (µm) 60 

 

Figure-2 exhibits the midpoint deflection versus time in the 

absence of applied voltage with and without the Casimir force 

for present polysilicon clamped-clamped micro-beam. As could 

be seen in this figure, effects of the Casimir force leads to very 

inaccurate results. On the other hand, it is deduced that as the 

initial gap between micro-beam and stationary ground electrode 

is precisely equal to or smaller than d = 60 µm, the oscillatory 

system may collapse independently of components. In addition, 

it is noted that the results shown in Figure-2 are obtained based 

on the full non-linear equation of motion of micro-beam. 

However, by neglecting the non-linear terms, the obtained 

midpoint deflection may drop in value. Against, Jia et al.
23

 

showed the maximum deflection under the applied voltage may 

be increased, if the effects of pull-in voltage are taken into 

account. Furthermore, pull-in voltage of the micro-structure will 

also be varied by variation of gap ratio, 6�
�

���
)

2
. 

 

 
Figure-2 

Variation of the midpoint deflection versus time (a) with and 

(b) without the Casimir force 

 

The results given in Figure-3 clearly show both linear and non-

linear result of the strain gradient elasticity theory for the pull-in 

voltage of micro-beam versus gap ratio with and without the 

Casimir force effect. Based on this figure, by increasing the gap 

ratio, the pull-in voltage calculated from both the linear and 

non-linear analysis increases. It is noted that neglecting the 

stress components in Equation-6 may lead to under-estimation 

of pull-in voltage. Nevertheless, for a constant gap ratio, an 

increase in initial gap d results a decrease in the pull-in time 

when the oscillatory system is yet statically stable. Hence, it can 

be concluded that the Casimir force varies almost linearly 

according to geometrical parameters. 

 

Figure-4 has been provided to validate the accuracy of pull-in 

gap versus length from present numerical assessment. It should 

be mentioned that the critical pull-in gap with the Casimir force 

is identical to that without the Casimir force as the micro-beam 

is shorter. This is due to the fact that effect of the Casimir force, 

both in terms of pull-in voltage and gap, could be considerable. 
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Figure-3 

Influence of the gap ratio on the pull-in voltage response considering linear analysis (dotted line) non-linear analysis (direct 

line) (a) With and (b) without the Casimir force 

 

 
Figure 4 

Effect of the length on pull-in gap / 6(h/d+W)
2
 with and 

without the Casimir force (a) with the Casimir force
24

,  

(b) without the Casimir force
24

, (c) with the Casimir force by 

present analysis and (d) without the Casimir force by 

present analysis 

 

According to Equation-18, ∆ is a parameter of geometrical and 

material properties such as initial gap between micro-beam and 

stationary ground electrode. As seen in Figure 5, the calculated 

values of γ increase with an increase in ∆. It means that in the 

case of 
��

����
 >> 9.75 � 10

-3
, both parameters of pull-in time and 

pull-in voltage can be replaced by each other with any changes 

in the properties of micro-beam. 

 

 
Figure-5 

Variation of γ versus ∆ 
 

Conclusion 

In this paper, the GDQ method was employed to investigate 

effect of the Casimir force and SQFD on polysilicon double-

clamped micro-beam response resting on strain gradient 

elasticity theory. To do so, a non-linear Euler-Bernoulli beam 

model was utilized which accounts for the axial residual stress, 

the geometric non-linearity of mid-plane stretching as well as an 

electrostatic and the Casimir force. Furthermore, non-linear 

Reynolds equation was modelled numerically for SQFD in an 

unsteady condition. Overall, the numerical results showed that 

decreasing the applied voltage may lead to early instability in 

the micro-beam. The results also were compared with those 

obtained by previous experiments in the literature. 
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