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Abstract  

The dynamics of vertical unbalanced gyroscope rotor with hard nonlinear resilient characteristics is considered. For the 

purpose of investigation of rotor vibrations, its dynamic and mathematical model is 

recorded as equations of Lagrange of the 2

are expressed using expansion of solutions to the equations of expressed vibrations as well as ha

of Fourier. The equations as variations, and then the equations of Hill type, are recorded to study hardiness on the basis of 

motion equations. According to the theory of 

harmonic balance method. We concentrate on study of skewing influence, mass imbalance, disk thickness, size of nonlinear 

characteristics of the resilient mounting as well as external buffering to amplitude and phase and frequenc

as well as area boundaries of variability of the main resonance vibration. On the basis of analysis of research results the 

particularities of dependencies of the amplitude and phase of the main resonance vibration and instability region 

are accentuated and described from the angle between the imbalance lines, disk thickness, external resistance and shaft 

speed without the hard nonlinear resilient characteristics of the rotor. They can be important for development of optimal 

control of resonance vibrations, determination of optimal construction parameters, working speed range and rotor balancing 

methods in the pre-design works. The main working expressions are presented in a compact and non

 

Keywords: Gyroscope Rotor, Nonlinear Characteristics, Resonance Vibration, Instability Region, Mass Imbalance, Disk 

Skewing. 
 

Introduction 

As is well known, high-speed rotary machines are widely used 
in many industries (electricity, electronics and radio, food, light, 
chemical, petroleum, medical, metallurgy, aerospace, nuclear, 
etc.). High efficiency, low weight and high power density, 

relatively low cost of production and operation, as well as a 

small environmental pollution lead to the expansion of 
applications of rotary machines. Consequently, it is not 

surprising that the rotary machines are studied for a long time. 

Despite this, many problems are unsolved, in particular related 
to the joint action of imbalanced mass and skewed disk to 
vibrations and stability, taking into account the nonlinear 

characteristics and nonlinear resistance and subsequently 
stabilization of nonlinear resonance vibrations of rotary 
machines. 

 
In 1983, Benson showed that the combined influence of skew 

and imbalance of disk mass, i.e. the action of centrifugal forces 
and gyroscopic active torques causes that processing rotor has 
the unusual phase characteristic, and besides the oscillations 
phase does not need to match the orientation of imbalance at 

low speeds
1
. This may significantly change the methods of rotor 

balancing. Because frictional forces are only included in the 

equation of rotor translational displacement, the resonance 
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The dynamics of vertical unbalanced gyroscope rotor with hard nonlinear resilient characteristics is considered. For the 

purpose of investigation of rotor vibrations, its dynamic and mathematical model is constructed. The motion equations are 

Lagrange of the 2
nd

 kind. The expressions of amplitude and phase of the main harmonic component 

are expressed using expansion of solutions to the equations of expressed vibrations as well as harmonic balance to the series 

. The equations as variations, and then the equations of Hill type, are recorded to study hardiness on the basis of 

motion equations. According to the theory of Floquet, these equations are solved, and the stability c
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as well as area boundaries of variability of the main resonance vibration. On the basis of analysis of research results the 

particularities of dependencies of the amplitude and phase of the main resonance vibration and instability region 

are accentuated and described from the angle between the imbalance lines, disk thickness, external resistance and shaft 

speed without the hard nonlinear resilient characteristics of the rotor. They can be important for development of optimal 

trol of resonance vibrations, determination of optimal construction parameters, working speed range and rotor balancing 

design works. The main working expressions are presented in a compact and non
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speed rotary machines are widely used 
in many industries (electricity, electronics and radio, food, light, 
chemical, petroleum, medical, metallurgy, aerospace, nuclear, 
etc.). High efficiency, low weight and high power density, 

relatively low cost of production and operation, as well as a 

small environmental pollution lead to the expansion of 
tary machines. Consequently, it is not 

surprising that the rotary machines are studied for a long time. 

Despite this, many problems are unsolved, in particular related 
to the joint action of imbalanced mass and skewed disk to 

ng into account the nonlinear 

characteristics and nonlinear resistance and subsequently 
stabilization of nonlinear resonance vibrations of rotary 

In 1983, Benson showed that the combined influence of skew 

ion of centrifugal forces 
causes that processing rotor has 

the unusual phase characteristic, and besides the oscillations 
phase does not need to match the orientation of imbalance at 

the methods of rotor 
balancing. Because frictional forces are only included in the 

equation of rotor translational displacement, the resonance 

amplitude of translational and angular displacements is 
indefinitely growing at the second critical speed, which 
distorted picture of the amplitude
characteristics of rotor. This omission was considered in studies 
of the dynamics of two-bearing cantilever rotor with two
generalized imbalance, external damping was taken into account 
in all four equations of motion

2
. Due to this, we have the ability 

to properly construct amplitude

characteristics of rotor, to explore the effects of imbalanced 
mass and skewed disk, cantilever shaft and external damping, to 

compare oscillations’ amplitude at the
 

Considerable number of works is devoted to determination of 
position and orientation of imbalanced mass and skewed disk 
and, respectively, balancing methods of the rotor vibration 
control. Here, first of all the methods for determining the rotor 
mass imbalance and comparison of two methods of balancing 
are proposed

3
; the first of them is based on the measurement of 

force, acting on the bearings of balancing machine and the other 

- the measurement of the correspondi
Additional scales with a few pendulums are used for automatic 
balancing; motion of rotor is modeled on a computer

problem, associated with the orientation sensor in the 
holospectrum technique, is still not resolved

holospectrum technique works on the basis of the rotor 

___________ E-ISSN 2277-2502 

Res. J. Recent Sci.  

     1 

Mass Imbalance and Disk 

Hard Nonlinear Resilient Characteristics 

Machinery Manufacturing named after U. A. Dzholdasbekov, Almaty, Kazakhstan 

The dynamics of vertical unbalanced gyroscope rotor with hard nonlinear resilient characteristics is considered. For the 

constructed. The motion equations are 

. The expressions of amplitude and phase of the main harmonic component 

rmonic balance to the series 

. The equations as variations, and then the equations of Hill type, are recorded to study hardiness on the basis of 

these equations are solved, and the stability criterion is found using the 

harmonic balance method. We concentrate on study of skewing influence, mass imbalance, disk thickness, size of nonlinear 

characteristics of the resilient mounting as well as external buffering to amplitude and phase and frequency characteristics 

as well as area boundaries of variability of the main resonance vibration. On the basis of analysis of research results the 

particularities of dependencies of the amplitude and phase of the main resonance vibration and instability region boundaries 

are accentuated and described from the angle between the imbalance lines, disk thickness, external resistance and shaft 

speed without the hard nonlinear resilient characteristics of the rotor. They can be important for development of optimal 

trol of resonance vibrations, determination of optimal construction parameters, working speed range and rotor balancing 

design works. The main working expressions are presented in a compact and non-dimensional form. 

Rotor, Nonlinear Characteristics, Resonance Vibration, Instability Region, Mass Imbalance, Disk 

amplitude of translational and angular displacements is 
indefinitely growing at the second critical speed, which gives a 
distorted picture of the amplitude- and phase- frequency 
characteristics of rotor. This omission was considered in studies 

bearing cantilever rotor with two-
generalized imbalance, external damping was taken into account 

. Due to this, we have the ability 
to properly construct amplitude-and phase- frequency 

characteristics of rotor, to explore the effects of imbalanced 
mass and skewed disk, cantilever shaft and external damping, to 

ations’ amplitude at the critical speeds. 

Considerable number of works is devoted to determination of 
position and orientation of imbalanced mass and skewed disk 
and, respectively, balancing methods of the rotor vibration 

ethods for determining the rotor 
mass imbalance and comparison of two methods of balancing 

; the first of them is based on the measurement of 

force, acting on the bearings of balancing machine and the other 

the measurement of the corresponding deformation
4
. 

Additional scales with a few pendulums are used for automatic 
balancing; motion of rotor is modeled on a computer

5, 6
. The 

problem, associated with the orientation sensor in the 
holospectrum technique, is still not resolved

7
. Herewith the 

holospectrum technique works on the basis of the rotor 
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balancing. Currently, to determine the imbalance, initial phase 
vector (IPV) is used, but sometimes this method makes the 

equilibrium state is not defined. It contains the necessary 
modifications of this method. The principal compound of effects 

of a value of the major axis and the initial phase angle (IPA) of 
precession orbit is to be replaced for IPV value. At that the 

magnitude and angular position of unbalanced mass can be 
determined exactly for the amount of the major axis and IPA 

value respectively. Estimation of value will not now depend on 
the sensor orientation, an optimal result will be provided.

suggested an effective control scheme for transverse vibrations 
due to the imbalance of the rotor shaft, and theoretical study

To do this, it’s necessary to use an electromagnetic exciter, 
mounted on the stator in a place, convenient to operate 

transverse vibrations of the rotor through the air gap around the 
rotor. Suitable electromagnetic force of response is achieved by 

changing the control current, proportional to the displacement of 
the rotor section. This method provides control over the driving 
force in the air gap, freedom from hardship and loss of service 
and wear. The centrifuge with a system of automatic removal of 
centrifuge vibrations, generated by its imbalance is offered
Centrifuge rotor rotates about a fixed axis point. Two or more 
balloons in the ring, which are attached to the rotor, can 
automatically eliminate its vibration. The balls, which are also 
called free elements, can change their position within the ring so 
as to compensate for dynamic forces. The equations that 
determine the system behavior, as well as graphics, describe the 
rotor vibration and behavior of a ball in 
imbalance. The article explains that the balls occupy the final 
position, when the rotor and balls are dynamically stable.
Researches of hydroelastic vibrations of vertical gyro rotor, 
considering the energy source; it also offers practical
for rotor control

10
. 

 
Articles, dedicated to nonlinear oscillations in physical systems 
(including rotary), attract the attention. The monograph of 
Hayashi studied in detail nonlinear oscillations in physical 
systems with one degree of freedom

11
. 

Stupnicka added these researches by the analysis of resonant 
curve harmonics of higher order for the solution of oscillations 

equation, considering the dependence of their amplitudes and 
frequency phases and the assumption of a constant valu

amplitude (for the driving force) and the damping factor
study of non-linear resonant oscillations of main harmonics and 
other forces, taking into account nonlinear resistance
vibrations of the rotor Jeffcott, shaft of which has str
nonlinear elastic properties were considered

14

free vibrations of the rotor Jeffcott is non-

equation of second order with the complex deviation. This 
differential equation was analytically settled on the basis of 
Krylov –Bogolyubov method at two different initial conditions. 

The resulting solution describes the oscillatory motions of the 
rotor. Here investigates the influence of hydrodynamic, 
gyroscopic forces and damping, the change rotor mass on the 

rotor vibration, and then the results are analyzed. In the studies 
of the dynamic characteristics of a flexible rotor on ball 
bearings, excitation source is a mass imbalance
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precession orbit is to be replaced for IPV value. At that the 

magnitude and angular position of unbalanced mass can be 
amount of the major axis and IPA 

value respectively. Estimation of value will not now depend on 
the sensor orientation, an optimal result will be provided. It was 

suggested an effective control scheme for transverse vibrations 
rotor shaft, and theoretical study

8
. 

To do this, it’s necessary to use an electromagnetic exciter, 
mounted on the stator in a place, convenient to operate 

transverse vibrations of the rotor through the air gap around the 
ce of response is achieved by 

changing the control current, proportional to the displacement of 
the rotor section. This method provides control over the driving 
force in the air gap, freedom from hardship and loss of service 

system of automatic removal of 
centrifuge vibrations, generated by its imbalance is offered

9
. 

Centrifuge rotor rotates about a fixed axis point. Two or more 
balloons in the ring, which are attached to the rotor, can 

The balls, which are also 
called free elements, can change their position within the ring so 
as to compensate for dynamic forces. The equations that 
determine the system behavior, as well as graphics, describe the 
rotor vibration and behavior of a ball in the presence of 
imbalance. The article explains that the balls occupy the final 
position, when the rotor and balls are dynamically stable. 

hydroelastic vibrations of vertical gyro rotor, 
considering the energy source; it also offers practical methods 

Articles, dedicated to nonlinear oscillations in physical systems 
(including rotary), attract the attention. The monograph of 
Hayashi studied in detail nonlinear oscillations in physical 

. W. Szemplinska-
Stupnicka added these researches by the analysis of resonant 
curve harmonics of higher order for the solution of oscillations 

equation, considering the dependence of their amplitudes and 
frequency phases and the assumption of a constant value of the 

amplitude (for the driving force) and the damping factor
12

. The 
linear resonant oscillations of main harmonics and 

other forces, taking into account nonlinear resistance
13

. Free 
vibrations of the rotor Jeffcott, shaft of which has strong 

14
. Here equation of 

-linear differential 

equation of second order with the complex deviation. This 
differential equation was analytically settled on the basis of 

Bogolyubov method at two different initial conditions. 

The resulting solution describes the oscillatory motions of the 
rotor. Here investigates the influence of hydrodynamic, 
gyroscopic forces and damping, the change rotor mass on the 

on, and then the results are analyzed. In the studies 
of the dynamic characteristics of a flexible rotor on ball 
bearings, excitation source is a mass imbalance

15
. Rotor shaft 

with one disc is installed on two elastic supports with bearings 
and ball bearing. The nonlinearity is due friction to the radial 

clearance and Herztian contact between races and rolling 
elements. To solve nonlinear differential equations by the 

known harmonic balance method, the procedure for the 
evaluation of harmonic and superharmo

rotor oscillations was developed. The monograph of Grobov V.
studies the fluctuations of flexible rotor on elastic supports with 

non-linear characteristic, but does not concentrate interaction 
with generalized disk imbalance

16
. 

 

The above review of the researches shows that combined 

influence of unbalanced mass and skewed disk to resonant 
vibrations and  stability of rotary machines, taking into account 

nonlinear factors, presented in real structures was explored a 
little, and limitation of the study of dimensional nonlinear 

systems. Thus, the study of resonant oscillations and stability of 
rotary machines with unbalanced mass and skewed disk 
(considering nonlinear elastic characteristics of supports), 
technology of optimal control for resonant vibrations leading to 
the creation of new working rotary machines with optimal 
design parameters, are certainly relevant. 

 

A mathematical model of the rotor and 

research methodology 
 

Figure-1 shows the geometrical scheme of the rotor. A shaft

with a length L  is mounted vertically, via lower hinged bearing

and an upper elastic support (at a distance

of the shaft is fixed disk (having a 

inertia 
p

J  and cross-section moment of inertia 

same for all directions).  

 

Figure-1

Rotor geometry
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with one disc is installed on two elastic supports with bearings 
g. The nonlinearity is due friction to the radial 

clearance and Herztian contact between races and rolling 
elements. To solve nonlinear differential equations by the 

known harmonic balance method, the procedure for the 
evaluation of harmonic and superharmonic components of the 

rotor oscillations was developed. The monograph of Grobov V. 
studies the fluctuations of flexible rotor on elastic supports with 

linear characteristic, but does not concentrate interaction 
 

bove review of the researches shows that combined 

influence of unbalanced mass and skewed disk to resonant 
vibrations and  stability of rotary machines, taking into account 

nonlinear factors, presented in real structures was explored a 
on of the study of dimensional nonlinear 

systems. Thus, the study of resonant oscillations and stability of 
rotary machines with unbalanced mass and skewed disk 
(considering nonlinear elastic characteristics of supports), 

resonant vibrations leading to 
the creation of new working rotary machines with optimal 
design parameters, are certainly relevant.  

A mathematical model of the rotor and the 

1 shows the geometrical scheme of the rotor. A shaft 

is mounted vertically, via lower hinged bearing 

and an upper elastic support (at a distance
0

L ). At the free end 

of the shaft is fixed disk (having a mass m , polar moment of 

section moment of inertia 
T

J  that are the 

 
1 

Rotor geometry 
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The shaft speed ω is so large that the rotor can be regarded as a 

gyroscope, a fixed point which is the lower shaft bearing. Two 

coordinate systems are used. The coordinate system Oxy  is 

fixed in space. The geometric center of disk position S  is 

determined by the coordinates x , y , positions of shaft and rotor 

in the space by angles 
x
θ , 

y
θ  and the angle of rotation φ = ωt . 

We also assume that the linear eccentricity e  lies on the axis 

SX  and lags behind the plane of angular eccentricity τ  by an 

angleβ . We confine ourselves to small deviations of the rotor 

axis, and therefore, in our calculations we only consider terms 

that are linear relative to small values: 
x ye, τ,θ ,θ .

 
 

Is an expression of the kinetic energy of the rotor and the 

potential energy of the elastic support, torques of the external 

forces and dissipation function and substituting them into the 

Lagrange equation of the second kind
17

, we obtain the equations 

of motion as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 4 3 2 2

T x P y e x 1 0 2 0 x P T

2 2 4 3 2 2

T y P x e y 1 0 y 2 0 y P T

J +mL θ +J ωθ +µ θ + k L -GL θ+k L θ = meωL+Ge cosωt + J -J τω cos ωt +β

J +mL θ -J ωθ +µ θ + k L -GL θ +k L θ = meω L+Ge sinωt+ J -J τω sin ωt+β

&& & &

&& & &

                                                    
(1) 

 

where:
1

k  is the support stiffness coefficient, 
2

k  is the 

coefficient in the nonlinear term of the elastic force, G is the 

weight of disc, 
е
µ  is coefficient of resistance. Use of these 

dimensionless parameters  

e = e L;
0 0

l = L L;
0

t = tω ;
0

ω
Ω = ;

ω
( )2

p p
J = J mL ;

( )2

T T
J = J mL ;

 

( )2

1 1 0
K = k mω ; ( )2 2

2 2 0
K = k L / mω ; ( )2

0
P = G mLω ;

( )2µ = µ mL ω ,
e 0

  (2) 

where 
( )

2

1 0

0 2

p T

k L - GL
ω =

mL - J - J
 is the critical speed of the linear 

system without resistance, using the symbols of amplitude 

( )
2

2 2 2 2 4 2M = Ω + P e + HτΩ cosβ + H τ Ω sin β 
    (3) 

 

and the initial phase  

( )

2

2 2

HτΩ sinβ
γ = arctg

Ω + P e + HτΩ cosβ   (4) 

The forcing moment to the right parts of the system (8) to yield 

equations of represented in a compact form: 

( ) ( )2 4 3

T x р y x 1 0 x 2 0 x
1+ J θ + J Ωθ +µθ + K l - P θ + K l θ =′′ ′ ′

( )Μcos Ω t + γ  (5) 

( ) ( )2 4 3

T y р x y 1 0 y 2 0 у
1+ J θ - J Ωθ +µθ + K l - P θ + K l θ =′′ ′ ′

( )Μsin Ω t + γ  (6) 

where: p TH = J - J  is the conventional disc thickness. 

 

It turns out that the state of stationary motion of the rotor is 

described by differential equations (5) and (6) of Duffing type.  
 

Typically when considering the periodic solution with a period 

equal to the period of external influence, the method of 

solutions expansion ((5) and (6)) to a Fourier range with 

undetermined coefficients is used. Coefficients can be found by 

using the well-known method of harmonic balance, taking into 

account the limited number of terms in the expansion. 
 

 Gyroscopic rotor with geometric nonlinear characteristic is 

examined for resonance to the fundamental frequency. As the 

elastic support, the materials with pronounced dissipative 

properties, rubber, rubber resin and other materials in the form 

of polymers, used as dampers of resultant oscillations, are used. 

 

Approximation of the solutions to equations (5) and (6) in the 

case of simple resonance of the fundamental harmonic with the 

oscillation frequency, which is equal to the frequency of 

disturbance torque, satisfies 

х
θ = Аcos(Ω t -α)  (7)  

уθ = Аsin(Ω t -α)   (8)  

After application of the well-known method of harmonic 

balance, we obtain the amplitude-and phase-frequency 

dependence for the rotor system 

( ) ( )
2

2 2 4 2 2 2 2 2

1 0 2 0

3
1-Н Ω - K l - P - K l A + µ Ω А = М

4

   
  
   

  (9)  

( ) ( )

( ) ( )

2 2 4 2

1 0 2 0

2 2 4 2

1 0 2 0

3
1- H Ω - K l - P - K l A tgγ +µΩ

4
tgα =

3
1- H Ω - K l - P - K l A -µΩtgγ

4

 
  

 
  

 (10)  

 

Equating to zero the forcing torque М and the coefficient of 

resistance µ, from the formula (9), we obtain the equation for 

the skeleton curve
18

. 

 

( ) ( )2 2

1 02

2 0

2
A = 1- H Ω - K l - P

3K l
  (11) 

 

where 

2

1 0
K l - P

Ω
1- H

≥  

From formula (11), it follows the greater coefficient 
2

K  of 

nonlinear term of the elastic force, the greater the slope of the 

supporting curve to the right. 

 

To investigate the stability of the rotor motion we use the 

Floquet theory. If in the works of Hayashi, W. Szemplinska-

Stupnicka and Кydyrbekuly
   

it was used to study the system 

stability with one degree of freedom, here the Floquet theory we 
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going to use for the rotor system with two degrees of freedom. 

Let us consider small increments in time
x

δθ , 
yδθ

 
for harmonic 

solutions 
x0
θ

 
and 

y0θ of equitation (5) and (6). Stability of 

resonance vibration modes of the system depends on the 

behavior of small deviations in time 
x

δθ and, 
yδθ

 
i.e. on 

solutions of equations of the perturbed system state:  

( ) ( )
2

y 2 4 2x x

T p 1 0 2 0 x02

dδθd δθ dδθ
1+ J + J Ω +µ + K l - P + 3K l θ

dt d td t
 
 

x
δθ = 0 ,  (12) 

( ) ( )
2

у у 2 4 2х

T p 1 0 2 0 у02

d δθ dδθdδθ
1+ J - J Ω +µ + K l - P + 3K l θ

dt d tdt
 
 

у
δθ = 0 .  (13) 

 

If solutions 
x

δθ and 
yδθ of equitations (12) and (13) at t → ∞

are limited, the motion of the system is considered to be stable; 

if values 
x

δθ and 
yδθ  grow indefinitely at t → ∞ , the motion 

(according to Lyapunov study) is unstable.  

Using the transformations 
-0,5µ t

х
δθ = е ξ  и 

-0,5µ t

yδθ = е η    (14)  

and changing values х0θ and у0θ  by their decompositions (7) 

and (8), bring (12) and (13) to equations of the Hill: 

( ) ( )
2

T T 01 2C 2S p p2

d ξ dξ dη 1
1+J -µJ + θ +θ cos2Ωt +θ sin2Ωt ξ+JΩ - µJΩη=0

dt dt 2dt
 

  (15) 

( ) ( )
2

T T 01 2C 2S p p2

d η dη dξ 1
1+J -µJ + θ +θ sin2Ωt -θ cos2Ωt η- J Ω + µJ Ωξ=0

dt dt 2dt

 (16) 

where: ( ) ( )2 2 4 2

01 T 1 0 2 0

1 1 2
θ = 1+ J µ - µ + K l - P + K l A

4 2 3
; 

4 2

2С 2 0

2
θ = K l A cos2α

3
; 4 2

2s 2 0

2
θ = K l A sin2α

3
  (17)  

Some functions of the argumentsА,α . According to the Floquet 

theory, particular solutions of equations (15) and (16) are in the 

form 

( )λ tξ = е acos Ω t - δ   (18)  

( )λ tη = е аsin Ω t - δ   (19)  

where: λ  - characteristic exponent (real or imaginary). 

Substituting the solutions (18) and (19) to the equations (15) and 

(16) and applying the harmonic balance method, i.e. equating 

the coefficients of the same frequencies, we obtain a system of 

linear homogeneous equations that must be satisfied for any 

nontrivial values of the variables а  and δ . Then, using Floquet 

theory for the oscillating system with two degrees of freedom 

and taking into account (17) and 
µ

λ =
2

, we make the 

characteristic determinant, defining the boundaries of instability 

region for the harmonic solutions, characterizing the resonance 

on the fundamental frequency. Expanding the determinant, we 

obtain an expression that defines the instability region, 

depending on the rotor parameters: 

 

( )2R A,Ω,µ,K ,H =  

( ) ( ) ( )
2

2
2 2 2

T T 01 T p P T

1
= 0,25 1+ J µ -0,5µ J - 1-H Ω +θ + 0,5 2+ 2J - J Ωµ+µ J - J Ω -

2

          

 

( )2 2

2C 2S

1
- θ +θ = 0

4
  (20) 

In this, region of stability is characterized by the inequality 

R >0    (21)  

The geometric locus of points at which the amplitude curves for 

the main resonance oscillations have vertical tangents, is 

determined by the equation 

dΩ
= 0

dA
.  (22)  

In accordance with the equation (9), we have the following 

equality 

( ) ( ) ( )
2

2 2 4 2 2 2 2 2

1 0 2 0

3
f Ω,A = 1-Н Ω - K l - P - K l A +µ Ω А -М = 0

4

   
  
   

 (23) 

Let us differentiate the last equation by frequency
19

, then we get  

0=
Ω∂

∂

∂

∂
+

Ω∂

∂ A

A

ff
 

It follows that  

Ω∂∂

∂∂
−=

∂

Ω∂

f

Af

A
  (24)  

Condition (24) is approximately satisfied with the equity  

0
f

A

∂
=

∂
  (25)  

The equation (25) leads to the equation 

( ) ( ) ( )
2 2

22 2 4 2 4 2

1 2 2

3 3
1-Н Ω - K l - P - K l A + µΩ - K l A = 0

2 4

   
  

   
 

 (26) 

 

Thus, the tangent to the resonance curves is vertical at the edge 

of the main region of instability. Equation-26 describes the 

boundary curves of the stability range for oscillations at the 

fundamental resonance frequency. 

 

Results and Discussion 

Calculations using formulas (3), (4), (9), (10) and the solving of 

set of Equations (20) and (26) were obtained using numerical 

methods in the symbolic computation system «Maple 11» for 

the following rotor parameters: e = 0,01; τ = 0,02;
0

l = 0,88;

µ = 0,01;  

H = +0,1: pJ = 0, 2;
T

J = 0,1;
1

K = 1,19;   

2
K = 1,19;2,19; P = 0,012;   
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H = -0,1:  pJ = 0,1;
T

J = 0,2;  
1

K = 1,45;  

2
K = 1,45;2,45;  P = 0,014.   

Analysis of formula (10) shows, the amplitude of the driving 

torque reaches a maximum value at β=0
0
 in the case of a thin 

disc (at β=180
0
 in the case of a thick disc), a minimum value – 

at β=180
0
 in the case of a thin disc (at β=0

0  
in the case of a 

thick disc) and an intermediate value – at β=±90
0
. It is 

illustrated by graphics М = М (Ω) for different values of β
 
and 

Н, shown in Figures-2 and 3.  

 

On Figures 4 and 5 and on graphs γ=γ (Ω) at Ω→∞ the phase of 

the driving torque strives to the asymptotic value: maximum at 

β=+90
0
 in the case of a thin disc (at β=-90

0
 in the case of a 

thick disc), minimum at β=+90
0
 in the case of a thick disc (at 

β=-90
0 

in the case of a thin disc) and assumes a zero value at 

β=0
0
,
 
180

0
. 

 

Figures 6-9 show amplitude- and phase-frequency 

characteristics of the rotor in cases of thin and thick disks. From 

the figures above it is clear that the resonance curves are 

extended from the end to the right due to the influence of 

nonlinearity in the system. The greater the magnitude of 

nonlinearity K2, the stronger this effect. 

 

 
Figure- 2 

Effect of the angle between the orientations of the imbalances on forcing torque Case of a thin disk 
 

 
Figure- 3 

Effect of the angle between the orientations of the imbalances on forcing torque Case of a thick disk 
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Figure- 4 

Effect of the angle between the orientations of the imbalances on the phase of forcing torque. Case of thin disk 

 

 
Figure- 5 

Effect of the angle between the orientations of the imbalances on the phase of forcing torque 

Case of a thick disk 
 

Dependence of the amplitude А on the angleβ  between the 

lines of mass imbalance and maximum disc skew (Figures-6 and 

8) is similar to the case of a rotor linear model
20

. The skew 

effect may lead to an increase or a decrease of the amplitude of 

the oscillations. In the case of a thin disc (Н = 0,1) at the angle 

β = 0 , the maximum skew line coincides with the line of the 

eccentricity mass vector; the directions of gravity torques, 

centrifugal force and a gyroscopic moment coincide, and 

exciting moment reaches its maximum (Figure-2), and these 

lead to intensification of shaft deviation from the vertical 

(Figure-6). At angle
0

β = 180 , the gyroscopic torque is directly 

opposite to the total torque of centrifugal and gravity forces; the 

forcing torque and amplitude of the oscillations are at their 

smallest (discussion of the formula (10) and the graph of 

Figures-2 and 6). At angle
0

β = ±90 , the disturbances are 

perpendicular to each other, and we obtain intermediate values 

of the exciting moment and the oscillation amplitude (Figure-2, 

Figure-6). In the case of the thick disk ( H = -0,1 ), dependence 

of the oscillation amplitude А on the angle β  changes due to the 

nature of the opposite sign of the gyroscopic moment (Figure-

8). 

 

Left to the skeleton curve regimes, for which the amplitude 

increases at growth, will be stable; right to the skeleton curve 

regimes, for which the amplitude decreases at growth, will be 

stable. Segments МАВ and ND of the resonance curve 

correspond to stable amplitudes, and section BD – to unstable. 

At very slow increase of the angular velocity of the rotor, an 

oscillation amplitude increases along the curve MAP, and as it 

can be seen from calculations at the point corresponding to 

coincidence of large amplitude values, the amplitude changes its 

value by a «leap» and subsequently decreases when increasing. 

At very slow decrease of the angular velocity, an oscillation 

amplitude varies at the curve ND; at the point D the amplitude 

changes its value by a «leap» to a value corresponding to point 

A on the resonance curve; at further decrease of the angular 

velocity, the amplitude varies at the curve AM. 

 

In the phase-frequency characteristic of the fundamental 

harmonic, the phase curves at a critical velocity rise up, and 

then in accordance with the values of the amplitude A bifurcate: 

one group of branches looks toward to the horizontal constant 

level, the other descends from a given level, and the third rises 

above this level; the values affect the relative positioning of the 

curves in each group. Calculations show that when amplitude A 

takes one instead of two values, curves at three values A are 

grouped into one line, and the phase-frequency curves in the 

case of linear model
20

 will vary on values. 
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Figure- 6 

Effect of the angle between the orientations of the imbalances on the resonance amplitude of the fundamental frequency. 

Case of a thin disk 

 

 
Figure- 7 

Effect of the angle between the orientations of the imbalances on phase shift angle at the fundamental frequency.  

Case of a thin disk 

 

 
Figure- 8 

Effect of the angle between the orientations of the imbalances on the resonance amplitude of the fundamental frequency. 

Case of a thick disk 
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Figure- 9 

Effect of the angle between the orientations of the imbalances on phase shift angle at the fundamental frequency.  

Case of a thick disk 

 

 
Figure- 10 

Effect of the nonlinearity magnitude on the boundary of the instability region of the fundamental resonance.  

Case of a thin disk 

 
Figure- 11 

Effect of the nonlinearity magnitude on the boundary of the instability region of the fundamental resonance.  

Case of a thick disk 
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Graphs on Figures 10 and 11 show, that with increasing 

magnitude of the nonlinearity, the instability regions are moved 

downwards and their width decreases. From Figures 10 and 11, 

the influence of the disk thickness on the position and width of 

the instability region can be seen. At the same speed of rotation, 

the width of instability region for a thin disk is less than the 

same parameter for a thick disk. 

 

 
Figure- 12 

Effect of external resistance on the oscillation amplitude and the boundary of the instability region of the fundamental 

resonance. Case of a thin disk 

 

 
Figure- 13 

Effect of external resistance on the oscillation amplitude and the boundary of the instability region of the fundamental 

resonance. Case of a thick disk 

 

As it can be seen from the formula (20), design parameters are 

reflected in the terms of the rotor instability region. Therefore, 

by varying them, we can choose the optimal modes of the 

machine operation, excluding resonance phenomena. 

 

Conclusion  

The basic resonant oscillations and stability of a vertical rigid 

gyro rotor with rigid nonlinear elastic characteristics and 

nonlinear resistance, a skewed disk and an imbalanced mass are 

investigated. It is found that the disk skew affects the amplitude 

and phase of the driving torque and consequently the magnitude 

of the amplitude and phase of the fundamental resonant 

oscillations. Variants such as thin and thick disks are studied. 

Changing the disk thickness affects the location of the 

resonance curves and the width of the instability region. Under 

the influence of nonlinear components of the elastic force, the 

resonance curves are drawn from the end and bent to the right, 

to the high speed region, the amplitude decreases, and the 

instability region shifts downward; there at the shift in the upper 

bound is greater than that of the lower bound and the width 

decreases. 

 

External resistance shortens the resonance amplitude and 

virtually has no effect on the boundary of instability region. The 

results of studies of the effect of thickness, weight imbalance 

and skewed disk, their orientations, the nonlinear parameter of 

the elastic support, as well as the viscous external friction at the 

main resonant oscillations and their stability can create 

balancing methods, to determine the safe operating range of 

velocities and to find effective parameters for the reliable 

operation of the rotor. 
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