

GC-MS Analysis of Fruits of Calotropis procera: A Medicinal Shrub

Chandrawat P*. and Sharma R.A.

Medicinal Plant Research Laboratory, Department of Botany, University of Rajasthan, Jaipur-302004 (Rajasthan), INDIA

Available online at: www.isca.in, www.isca.me Received 2nd February 2015, revised 28th April 2015, accepted 28th May 2015

Abstract

The phyto-components of Calotropis procera Linn. Fruits were screened by gas chromatography-mass spectroscopy (GC-MS) analysis. Benzene extract was prepared by soxhlet exract from the fruits of C. procera. GC-MS running time for benzene extract of fruits of C. procera was 45 min. The total number of compounds identified in benzeneic extract was 39. The major phytoconstituents present were Lupenol (12.10), n-Hexadecanoic acid (12.07), Thymol (9.86), Tetratetracontane (6.88) and Linoleic acid (6.74) Many phytosterols were also present such as Stigmasterol (0.70), beta–sitosterol (0.54) and Campesterol (0.31)

Keywords: Phyto-components, GC-MS, calotropis procera, benzene extract.

Introduction

Plants have been a rich source of medicines because having potential bioactive molecules, most of which probably participated as a chemical defense against predation or infection¹. Calotropis belongs to Asclepiadaceae or Milkweed or Aak many phytochemicals with potential family, contains pharmacological activities. In India C. procera has a great value because of its other uses and economical importance. Arka (C. *procera*) is using as drug of Ayurveda from the ancient time. The ancient name of the plant in Vedic literature was Arka alluding to the form of leaves which was used in sacrificial rites. All plant parts, viz. root, stem, leaf, flowers and fruits of *C. procera* are generally use in indigenous system of medicine^{2,3}. It shows anticancer, antifungal⁴ and insecticidal activities⁵. Fruits of C. procera exhibit antimicrobial⁶ and antioxidant activity⁷. Therefore, in the present study the major fruit constituents were separated and identified through GC-MS analysis.

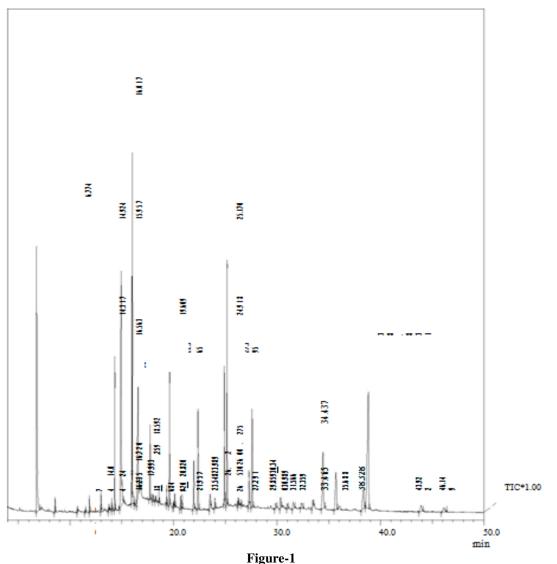
Material and Methods

Plant Material: Fruits of *C. procera* were collected from local area of Jaipur city, Rajasthan, India. They were authenticated from Herbarium, Department of Botany, University of Rajasthan, Jaipur. Voucher spaciman no. 9146 was deposited in the university.

Extraction: Mature fruits were subjected to shade drying (22°C) for two weeks and then processed at laboratory mill. Air dried coarse powder thus obtained (1 kg) was extracted with benzene in soxhlet extractor by continued successive hot extraction method. Finally the marc was collected and concentrated.

Parameters of GC-MS Analysis: GC-MS model: Perkin Elmer Autosystem XL with Turbomass, column type: PE-5MS, column material: 5% phenyl polysiloxane, column length: 30 meters, column inner diameter: 0.250 mm, flow rate (N₂): 1 ml/min, temperature of injector: 250°C, temperature of detector: 280°C, temperature of source: 280°C, temperature of transfer: 280°C, programming rate: starting from 78°C for 5min. Increasing temperature with rate 10°C/min up to 280°C and hold for 20min. Retention time: 45min.

Results and Discussion


GC-MS running time for benzene extract of fruits of *C. procera* was 45 min. The total number of compounds identified in benzene extract was 48. The GC-MS retention time (RT) and percentage peak of the individual compounds were demonstrated in table-1, figure-1. The major phytoconstituents present in benzene extract were Lupenol (12.10), n-Hexadecanoic acid (12.07), Thymol(9.86), Tetratetracontane (6.88) and linoleic acid (6.74) Many phytosterols were also present such as stigmasterol (0.70), beta–sitosterol (0.54) and Campesterol (0.31)

Conclusion

The results reveal that the extracts have a quite number of chemical constituents, which may be responsible for many pharmacological activities. For instance, Lupenol shows antiinflammatory, anti arthritic activity and wound healing activity⁸, anti-cancer activity9. Thymol shows strong antimicrobial activities when used alone or with other biocides such as carvacrol. Thymol can also reduce bacterial resistance to common drugs such as penicillin¹⁰ and also exihibts antioxidant properties^{11,12}. Thymol and carvacrol reduce bacterial resistance to antibiotics through a synergistic effect,¹⁰ and thymol also act as an effective fungicide¹³. Thymol also exhibits strong antimutagenic effect¹⁴. In addition, it has antitumor properties¹⁵ Linoleic acid is using in the beauty products industry. Linoleic acid shows anti-inflammatory, acne reductive, and moisture retentive properties on the skin^{16,17,18}. Further studies are needed on these extracts in order to isolate, identify, characterize and elucidate the structure of these compounds.

Table-1
Chemical constituents present in the methanolic extract using GC-MS analysis

Chemical constituents present in the methanolic extract using GC-MS analysis					
Peak#	R.Time	Area	Area%	Name	
1	6.774	15747413	9.86	Thymol	
2	8.540	530898	0.33	BICYCLO[7.2.0]UNDEC-4-ENE, 4,11,11-TRIMETHYL-8-	
3	10.709	131507	0.08	Isotetradecane	
4	11.475	129474	0.08	Cyclopentaneacetic acid	
5	11.880	633600	0.40	Dotriacontane	
6	12.982	590830	0.37	Tetradecane	
7	13.744	265853	0.17	Araldite	
8	14.024	442101	0.28	Nonadecane	
9	14.317	4759207	2.98	Hexadecanoic ACID, Methyl Ester	
10	14.924	19283635	12.07	n-Hexadecanoic acid	
11	15.957	6208576	3.89	Methyl Linolelaidate	
12	16.017	9938878	6.22	Methyl elaidate	
13	16.235	258950	0.16	Methyl isostearate	
14	16.563	10767781	6.74	Grape seed oil/ Linoleic acid	
15	16.720	536566	0.34	Stearic acid	
16	17.728	2659304	1.66	Octacosane	
17	17.993	268519	0.17	Methyl Icosanoate	
18	18.259	237844	0.15	Heptacosanol	
19	18.592	462387	0.29	Docosane	
20	19.334	763942	0.48	Muscalure	
21	19.609	5410795	3.39	Eicosane	
22	19.979	239461	0.15	Methyl heneicosanoate	
23	20.116	632172	0.40	Dinopol NOP	
24	20.684	682643	0.43	Benzyl undecanoate	
25	20.820	726075	0.45	Pentatriacontane	
26	21.957	2875177	1.80	Behenic Alcohol	
27	22.365	6192149	3.88	Eicosane	
28	23.548	1283605	0.80	Benzyl Myristate	
29	23.989	606614	0.38	Cetane	
30	24.918	5504226	3.45	9-Hexacosene	
31	25.170	10988698	6.88	Tetratetracontane	
32	26.200	150287	0.00	Calciferol	
33	26.275	216306	0.09	Hexadecane	
33	26.530	237095	0.14	Retinol	
35	27.291	2159155	1.35	17-Pentatriacontene	
36	27.595	5833002	3.65		
30	27.595			Nonacosane Composterol	
		500866	0.31	Campesterol	
38	30.340	1111204	0.70	Stigmasterol	
39	30.989	432963	0.27	Tetratriacontane .betaSitosterol	
40	31.566	826771	0.52		
41	32.359	656752	0.41	Methyl Commate C	
42	33.465	809809	0.51	Methyl Commate D	
43	34.437	6995138	4.38	Methyl Commate A	
44	35.688	5547375	3.47	Methyl Commate D	
45	38.328	3119371	1.95	Lupeol acetate	
46	38.831	19336700	12.10	Lupenol	
47	43.922	1134662	0.71	Beta Amyrene	
48	46.149	917572	0.57	Urs-12-ene	
		159743908	100.00		

GC-MS Chromatogram of Benzene extract of fruits of *C. procera*

Acknowledgement

The authors gratefully acknowledged University Grant Commission (UGC) New Delhi for financial support in the form of Post Doctoral fellowship for Woman.

References

- 1. Ramaprabha M. and Vasantha K., Phytochemical and antibacterial activity of *Calotropis procera* (Ait.) R.Br. flowers, *Int. J. of Pharma and Biosciences*, **3**(1), 1-6 (2012)
- 2. Mukherjee B., Bose S. and Dutta S. K., Phytochemical and pharmacological investigation of fresh flower extract of *Calotropis procera* Linn., *Int. J. of Pharmaceutical Sciences and Research*, **1**(2), 182-187 (2010)

- **3.** Meena A.K., Yadav A. and Rao M.M., Ayurvedic uses and pharmacological activities of *Calotropis procera* Linn., *Asian Journal of Traditional Medicines*, **6**(2), 45-53 (2011)
- 4. Ansari SH, Ali M., Norditerpenic ester and pentacyclic triterpenoids from root bark of *Calotropis procera* (Ait) R. Br., *Pharmazie*, **56**(2), 175-177, (2001)
- 5. Begum N., Sharma B. and Pandey R.S., Evaluation of Insecticidal Efficacy of *Calotropis procera* and Annona Squamosa Ethanol Extracts Against Musca Domestica, *J Biofertil Biopestici*, 1(1), 1 -6 (2010)
- Jain, S.C., Sharma R., Jain R. and Sharma R.A., Antimicrobial activity of *Calotropis procera*, *Fitoterapia*, 67(3), 275-277 (1996)
- 7. Yazna srividya B., Ravishankar K. and Priya Bhandhavi P., Evaluation of in vitro antioxidant activity of Calotropis

procera fruit extract, *Inter. J. Res. in Pharm. and Chem*, **3**, 2231-2781(**2013**)

- **8.** H.R. Siddique, S.K. Mishra, R.J. Karnes and M. Saleem, Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy, *Clin. Cancer Res.*,(**2011**)
- B.Venkata Raman, L.A. Samuel, M. Pardha Saradhi, B. Narashimha Rao, A. Naga Vamsi Krishna, M. Sudhakar and T.M. Radhakrishnan, Antibacterial, antioxidant activity and GC-MS analysis of *Eupatorium odoratum*, *Asian Journal of Pharmaceutical and Clinical Research*, 5(2), 99-105 (2012)
- Zarrini G., Bahari-Delgosha Z., Mollazadeh-Moghaddam K., Shahverdi A.R., Post-antibacterial effect of thymol, *Pharmaceutical biology*, 48(6), 633–636 (2010)
- 11. Ündeğer Ü., Başaran A., Degen G. H., Başaran N., Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol, *Food and Chemical Toxicology*, **47(8)**, 2037–2043 (**2009**)
- Ahmad A. et al, Proton translocating ATPase mediated fungicidal activity of eugenol and thymol, *Fitoterapia*, (2010)
- Mezzoug N., Elhadri A., Dallouh A., Amkiss S., Skali N.S., Abrini J., Zhiri A., Baudoux D., Diallo B., El Jaziri M., Idaomar M. Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential

oil and some of its constituents, *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, **629(2)**, 100 (**2007**)

- 14. Andersen A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol, *International journal of toxicology*, **25**(1), 29–127 (**2006**)
- Trombetta D., Castelli F., Sarpietro M. G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G., Mechanisms of Antibacterial Action of Three Monoterpenes, *Antimicrobial Agents and Chemotherapy*, 49(6), 2474–8 (2005)
- Diezel W.E., Schulz E., Skanks M., Heise H., Plant oils: Topical application and anti-inflammatory effects (croton oil test), *Dermatologische Monatsschrift*, 179, 173 (1993)
- Letawe C., Boone M. Pierard G.E., Digital image analysis of the effect of topically applied linoleic acid on acne microcomedones, *Clinical and Experimental Dermatology*, 23(2), 56–58 (1998)
- Darmstadt G.L., Mao-Qiang M., Chi E., Saha S.K., Ziboh V.A., Black R.E., Santosham M., Elias P.M. ,Impact of tropical oils on the skin barrier: possible implications for neonatal health in developing countries, *Acta Paediatrica*, 91(5), 546–554 (2002)