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Abstract 

This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated moving-

average processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap 

based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long 

memory case, we use the AR-sieve bootstrap which approximates the data generating process of a given long memory time series 

by a finite order autoregressive process and resamples the residuals. A simulation study is conducted to examine the performance 

of the AR-sieve bootstrap procedure. For the purpose of illustration a real data example is also presented. 

 

Keywords: Sieve bootstrap, prediction intervals, long memory time series. 
 

Introduction 

Forecasting is one of the fundamental objectives in the statistical 

analysis of time series. A forecast or prediction interval usually 

consists of an upper and a lower limit between which the future 

value of the given time series is expected to lie with a prescribed 

probability. Parametric approaches to constructing forecast 

intervals for a linear time series assume that the series follows a 

linear finite dimensional model with known error distributions. As 

a consequence, these methods fail to get satisfactory coverage when 

the error distribution is misspecified. For example, the most 

commonly used Box-Jenkins procedure assumes a normal error 

distribution and it performs poorly for a skewed bimodal 

distribution
1
. 

 

Since the work by the above authors, some bootstrap procedures 

have been proposed as a distribution free alternative to parametric 

methods. Bootstrap methods for constructing prediction intervals 

for processes with a finite unknown p, where p is the order of AR 

model, under the assumption that a consistent estimator of p is 

available have been proposed
2,3

. Some further developments on 

bootstrap prediction intervals can be found in the literature
4-6

. 

Recently, some bootstrap methods for constructing prediction 

intervals for a general class of linear processes have been 

proposed
7,8

. Different ways of introducing model uncertainty in the 

time series bootstrap have been introduced
 
and a comparison of 

these methods with existing alternatives in the case of prediction 

intervals have also been studied
9
. However, all the work mentioned 

above seems to exclude the long memory time series. In the last 

two decades we have witnessed a rapid development in the field of 

long memory time series. Many observed time series exhibits long 

range dependence. A review of the application and analysis of the 

long memory time series models can be found in the literarure
10,11

. 

For long memory time series one can extend the Box-Jenkins 

procedure but the drawback of the Box-Jenkins procedure is its lack 

of robustness to model miss-specification and error distribution. For 

long memory ARFIMA processes, a model based bootstrap method 

to construct prediction intervals has been proposed
12

. Their method 

identifies the model and estimates its parameter by Whittle 

estimator. The identification and estimation of the AR model is 

simpler as compared to ARFIMA model. This article considers the 

construction of prediction intervals for long memory time series 

using the AR sieve-bootstrap method. We use the residual based 

AR(p)-sieve bootstrap resembling scheme by approximating the 

given long memory model by an AR(p) model. The AR sieve- 

bootstrap method for the construction of prediction intervals of 

ARFIMA model was considered by Amjad et al.
13

. Later on the 

same problem was also independently studied by Rupasinghe el 

al.
14

. The paper is organized as follows: in Section 2 we describe 

the sieve-bootstrap procedure to construct prediction intervals for 

long memory time series. Section 3 presents the simulation results. 

Section 4 contains a real data example. Finally, we conclude in 

section 5. 

 

Sieve Bootstrap Prediction Intervals 

The method of sieve bootstrap approximates the data generating 

mechanism of a linear process by an AR(p) model where 

∞→= )(npp  as ∞→n  and )()( nonp =  

and n is the sample size
15,16 

 

The bootstrap samples are then drawn from the fitted AR(p) model. 

Recently, the consequences of applying the sieve bootstrap for 

fractionally integrated processes which is a special class of long 

memory time series has been investigated
17

. The work done by the 

above authors motivates us to consider its use in constructing 

forecast intervals for long memory models. 
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The autoregressive fractionally integrated moving-average 

processes is a well known class of long memory models
18,19

. It is 

defined as 

t

d

t uBBXB
−−= )1)(()( θφ  
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10 =θ , 10 =φ  ( and B is the backward shift operator ) 

 

are the autoregressive and moving-average operators respectively; 

)( Bφ and )( Bθ have no common roots, dB −− )1( is fractionally 

differencing operator defined by the binomial expansion 
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for d < 0.5, d ≠ 0, -1, -2, ......... and tu is a white noise sequence 

with finite variance. If d > 0 then the series exhibits long memory. 

ARFIMA models have proven useful tools in the analysis of long 

range dependence processes. 

 

The algorithm to construct AR-sieve bootstrap prediction intervals 

is described as follows. 

 

For a given sample of size n, select the order p(n) of the 

autoregressive approximation. Any order selection criterion can be 

used. We use the AIC criterion and fix
10max

np =  here
20

. 

 

Fit an AR(p) model to the given series to get the estimates 

)ˆ........,.........ˆ,ˆ(ˆ
21

′= pφφφφ  of the autoregressive 

approximation and compute the residuals. For model fitting we use 

the Yule-Walker method. 

 

Draw an iid sample 
uG ~

ˆ  denoted by *ˆ
tu  where 

uG ~
ˆ  is the 

empirical distribution function of the centered residuals defined as 

∑
+=

− ≤−=
n

pt

tu xuIpnxG
1

1
~ )~()()(ˆ  

where ttt uuu ˆˆ~ −=  and ∑
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n
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tt upnu
1
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The bootstrap series is constructed by the recursion 

∑
=

− =−
p

j

tjtj uXX
0

** ˆ)(φ̂  

 

Where 1ˆ
0 =φ and the starting p observations are set to be X . 

Note that we generate n+100 observations by the above recursion 

and then discard the first 100 observations. 

Compute the order )(**
npp =  as in step (1) and the 

autoregressive coefficients )ˆ........,.........ˆ,ˆ(ˆ *
2

*
1

**
pφφφφ =  as 

in step (2) for the bootstrap sample 

)......,.........,( *
2

*
1

*
TXXX  given from the previous step. 

 

Compute the h-step ahead predicted future observations by the 

recursion 

∑
=

−++ +−=−

*

1

*** ˆ)(ˆ
p

j

tjhTjhT uXXXX φ  

where h ≥ 0 and 
tt XX =* , for Tt ≤  

 

Repeat the steps 3 to 6 B times to obtain the bootstrap future values

)......,.........,( *2*1*
hT

B
hThT XXX +++ , the prediction limits are 

defined as the quantiles of the bootstrap distribution function of

hTX +
*

. The monte Carlo estimate of the bootstrap distribution 

function of hTX +
*  is given by

BxXxG hT
b

BhX
/}{#)(ˆ *

,* ≤= +
+

, Bb ,,.........3,2,1= . The 

β100  percent prediction interval for 
hTX +  is constructed as  
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Simulation Studies 

To assess the finite sample performance of the sieve bootstrap 

prediction intervals we perform a simulation study. We use the 

following four models with two different values of the long 

memory parameter d , where d=0.2 (moderate long memory) and 

d=0.4 (strong persistence) are entertained. 

 

M1 : ARFIMA (0,d,0) 

M2 : ARFIMA (1,d,0) 

M3 : ARFIMA (0,d,1) 

M4: ARFIMA (1,d,1) 

 

We use two sample sizes 100 and 300 and different autoregressive 

and moving-average parameters for each model. We only present 

the results for autoregressive parameter 5.01 =φ  and moving-

average parameter 3.01 =θ . We use three different error 

distributions, the standard normal, the t-distribution with 5 degrees 

of freedom (i.e. leptokurtic one) and the exponential distribution 

with scale parameter equal to one (i.e. the asymmetric one). The 

exponential and t-distributions are centered and scaled to have zero 

mean and unit variance. We construct h= 1, 3, 5, 10 step ahead 

forecast intervals at the nominal coverage level of 95 percent. To 

evaluate the performance of the intervals we calculate the empirical 

coverage and length of the intervals with corresponding standard 

errors. The number of simulations S and the number of bootstrap 

resamples B are set to be 1000. For each combination of the model, 
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parameters, sample size and innovation distribution we perform the 

following steps. 

 

Generate a realization of size n and generate R=1000 future values 

of 
hTX + . These future values are generated conditional on the past 

n values of the generated realization, the true error distribution and 

the true values of the parameters. 
 

Calculate the bootstrap forecast interval 



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1 β  th is percentile of the 1000 bootstrap 

predicted values. 
 

Using the R true future values we calculate the empirical coverage 

of the interval. The empirical coverage (
*β ) is obtained as the 

percentage of R future values which lie in-between 
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We repeat the above steps S=1000 times and obtain the empirical 

mean length )( *L  and the empirical mean coverage
*β  with 

corresponding standard errors for each of the forecast intervals as 

follows. 
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The results for the four models are displayed in tables 1-4. For a 

particular sample size and parameters each model has almost the 

same performance for all the three error distributions which shows 

the robustness of the bootstrap forecast intervals to the error 

distribution. As expected the coverage increases as we increase the 

sample size from 100 to 300. Another notable feature is that a slight 

decrease occurs in the coverage as the model become more 

persistent. It might be due to the fact that the quality of AR(p)  

approximation deteriorates for strongly persistent long memory 

processes. 

Table-1 

Simulation results for M1 

Step-
ahead 

Sample size Distr. 
d=0.2 

*β (se)   *L (se) 

d=0.4 

*β (se)    *L (se) 

1 

100 N 93.9(0.003) 3.991(0.0004) 92.8(0.006) 4.390(0.0004) 

 t(5) 94.1(0.003) 4.077(0.0005) 93.1(0.006) 4.429(0.0006) 

 EXP. 93.5(0.007) 3.867(0.0007) 90.3(0.013) 4.318(0.0007) 

300 N 94.7(0.003) 4.059(0.0002) 93.7(0.006) 4.654(0.0004) 

 t(5) 94.7(0.002) 4.118 (0.0003) 94.0(0.006) 4.706(0.0004) 

 EXP. 94.7(0.006) 3.925 (0.0004) 92.6(0.011) 4.587(0.0005) 

3 

100 

N 93.9(0.002) 4.006(0.0004) 92.5(0.004) 4.403(0.0005) 

t(5) 94.1(0.002) 4.095(0.0005) 93.0(0.004) 4.481 (0.0006) 

EXP. 93.4(0.007) 3.867(0.0006) 90.0(0.010) 4.348(0.0008) 

300 

N 94.6(0.003) 4.048(0.0002) 93.5(0.004) 4.650(0.0004) 

t(5) 94.6(0.002) 4.119 (0.0003) 94.0(0.003) 4.729(0.0004) 

EXP. 94.5(0.004) 3.941 (0.0004 92.4(0.008) 4.615(0.0005) 

5 100 N 94.0(0.004) 4.020(0.0004) 92.3(0.003) 4.415(0.0005) 

  t(5) 94.1(0.002) 4.093(0.0005) 92.8(0.003) 4.486(0.0006) 

  EXP. 93.4(0.005) 3.888(0.0007) 89.9(0.008) 4.359 (0.0007) 

 300 N 94.6(0.003) 4.058(0.0002) 93.4(0.003) 4.657(0.0004) 

  t(5) 94.5(0.002) 4.104 (0.0003) 93.8(0.003) 4.721(0.0004) 

  EXP. 94.5(0.004) 3.939 (0.0004) 92.3(0.007) 4.618(0.0005) 

10 100 N 94.0(0.002) 4.013 (0.0004) 92.0(0.003) 4.410(0.0004) 

  t(5) 94.1(0.002) 4.103(0.0006) 93.5(0.003) 4.494(0.0006) 

  EXP. 93.3(0.005) 3.884(0.0007) 89.5(0.007) 4.346(0.0007) 

 300 N 94.6(0.003) 4.057(0.0002) 93.2(0.003) 4.652(0.0004) 

  t(5) 94.6(0.002) 4.119 (0.0003) 93.7(0.002) 4.745(0.0004) 

  EXP. 94.4(0.003) 3.956 (0.0004) 92.0(0.006) 4.629(0.0005) 
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Table-2 

Simulation results for M2 

Step-ahead Sample size Distr. d=0.2 *β (se)   *
L (se) d=0.4 *β (se)    *

L (se) 

1 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.0(0.003) 4.188(0.0004) 

94.3(0.003) 4.274(0.0006) 

94.1(0.010) 4.204(0.0007) 

94.6(0.003) 4.240(0.0002) 

94.7(0.003) 4.284(0.0004) 

94.7(0.009) 4.265(0.0004) 

93.3(0.004) 4.127(0.0004) 

93.8(0.004) 4.185(0.0007) 

92.8(0.009) 4.072(0.0007) 

94.1(0.004) 4.258(0.0003) 

94.3(0.003) 4.301(0.0004) 

93.4(0.010) 4.189(0.0004) 

3 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.2(0.002) 4.217(0.0004) 

94.3(0.002) 4.331(0.0006) 

94.2(0.004) 4.256(0.0008) 

94.6(0.002) 4.246(0.0003) 

94.7(0.002) 4.304(0.0004) 

94.9(0.002) 4.284(0.0004) 

93.4(0.003) 4.151(0.0004) 

93.8(0.003) 4.225(0.0006) 

92.8(0.007) 4.095(0.0007) 

94.0(0.002) 4.261(0.0003) 

94.3(0.002) 4.302(0.0004) 

93.6(0.006) 4.212(0.0004) 

5 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.2(0.002) 4.223(0.0004) 

94.4(0.002) 4.337(0.0006) 

94.2(0.004) 4.255(0.0008) 

94.7(0.002) 4.256(0.0003) 

94.6(0.002) 4.301(0.0004) 

94.9(0.002) 4.300(0.0004) 

93.4(0.003) 4.156(0.0004) 

93.7(0.003) 4.227(0.0006) 

92.7(0.006) 4.101(0.0007) 

94.0(0.002) 4.263(0.0003) 

94.2(0.002) 4.300(0.0004) 

93.5(0.006) 4.214(0.0004) 

10 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.3(0.002) 4.226(0.0004) 

94.4(0.002) 4.340(0.0006) 

94.3(0.003) 4.271(0.0008) 

94.6(0.002) 4.295(0.0004) 

94.6(0.002) 4.295(0.0004) 

95.1(0.002) 4.321(0.0005) 

93.3(0.003) 4.154(0.0004) 

93.6(0.003) 4.244(0.0006) 

92.5(0.006) 4.114(0.0007) 

94.1(0.002) 4.267(0.0003) 

94.2(0.002) 4.312(0.0004) 

93.4(0.005) 4.229(0.0004) 
 

Table-3 

Simulation results for M3 

Step-ahead Sample size Distr. d=0.2 *β (se)   *
L (se) d=0.4 *β (se)   *L (se) 

1 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.2(0.002) 3.938(0.0003) 

94.2(0.002) 4.039(0.0006) 

94.9(0.006) 3.835(0.0007) 

94.7(0.002) 3.960(0.0002) 

94.7(0.002) 4.037(0.0004) 

95.5(0.005) 3.844(0.0004) 

93.5(0.002) 4.005(0.0004) 

93.8(0.003) 4.081(0.0006) 

92.3(0.009) 3.921(0.0007) 

94.1(0.003) 4.142(0.0003) 

94.4(0.002) 4.191(0.0004) 

93.4(0.009) 4.062(0.0004) 

3 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.3(0.002) 3.957(0.0003) 

94.3(0.002) 4.056(0.0006) 

94.8(0.004) 3.848(0.0007) 

94.7(0.002) 3.968(0.0002) 

94.7(0.002) 4.042(0.0004) 

95.6(0.003) 3.847(0.0004) 

93.4(0.003) 4.009(0.0004) 

93.8(0.003) 4.099(0.0006) 

92.2(0.008) 3.949(0.0007) 

94.0(0.003) 4.146(0.0003) 

94.4(0.002) 4.205(0.0004) 

93.3(0.008) 4.078(0.0004) 

5 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.2(0.002) 3.962(0.0003) 

94.3(0.002) 4.053(0.0006) 

94.8(0.004) 3.848(0.0007) 

94.7(0.002) 3.962(0.0002) 

94.6(0.002) 4.024(0.0003) 

95.6(0.003) 3.853(0.0004) 

93.3(0.002) 4.016(0.0004) 

93.7(0.003) 4.093(0.0006) 

92.0(0.007) 3.938(0.0007) 

94.0(0.002) 4.144(0.0003) 

94.2(0.002) 4.189(0.0004) 

93.2(0.007) 4.086(0.0004) 

10 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

94.2(0.002) 3.952(0.0003) 

94.3(0.002) 4.059(0.0006) 

94.7(0.004) 3.850(0.0007) 

94.7(0.002) 3.963(0.0002) 

94.7(0.002) 4.048(0.0004) 

95.5(0.002) 3.867(0.0004) 

93.1(0.002) 4.015(0.0004) 

93.6(0.003) 4.117(0.0006) 

91.6(0.006) 3.947(0.0007) 

94.0(0.002) 4.145(0.0003) 

94.2(0.002) 4.205(0.0004) 

93.0(0.006) 4.093(0.0004) 
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Real data example 

In this section, we apply the sieve bootstrap approach to 

construct forecast intervals for Nile river data for the years 622-

1281, measured at the Roda Guage near the Cairo. The Nile 

river data is well known to have long memory behavior from 

previous studies
10

. The length of the series is 663 and we use a 

moving subsamples of size n= 100 and 300 to train a model, 

which is then used to construct 1,3,5 and 10 steps ahead forecast 

intervals. The window type subsampling proceeds as follows. 

 

Take the first n observations as a sample and construct the sieve 

bootstarp forecast intervals for observations (n+1), (n+3), (n+5) 

and (n+10), which are one; three, five and ten steps ahead 

forecast intervals respectively. 

 

Remove the first observation from the above subsamples and 

include (n+1)
th

 observation to make a subsample of size n and 

construct forecast intervals for observations (n+2), (n+4), (n+6) 

and (n+11) as above. 

 

We continue with the same fashion until we take from 

observation (654-n) to (653) as a sample and construct forecast 

intervals for observations 654, 656, 658 and 663, which are one, 

three, five and ten steps ahead forecast intervals respectively. 

 

Table-4 

Simulation results for M4 

Step-ahead Sample size Distr. d=0.2 *β (se)   *
L (se) d=0.4 *β (se)   *

L (se) 

1 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.7(0.006) 4.668(0.0005) 

93.6(0.009) 4.705(0.0006) 

93.5(0.013) 4.801(0.0008) 

94.7(0.006) 4.794(0.0003) 

94.6(0.006) 4.815(0.0004) 

93.8(0.013) 4.948(0.0005) 

93.6(0.005) 4.350(0.0004) 

93.9(0.005) 4.419(0.0006) 

93.6(0.011) 4.393(0.0007) 

94.5(0.004) 4.473(0.0003) 

94.3(0.005) 4.513(0.0004) 

94.0(0.011) 4.534(0.0005) 

3 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.7(0.003) 4.695(0.0005) 

93.8(0.003) 4.761(0.0006) 

93.5(0.003) 4.870(0.0008) 

94.7(0.002) 4.814(0.0003) 

94.6(0.002) 4.863(0.0004) 

94.4(0.003) 4.993(0.0005) 

93.6(0.003) 4.380(0.0004) 

93.7(0.003) 4.449(0.0006) 

93.5(0.004) 4.436(0.0008) 

94.4(0.002) 4.500(0.0003) 

94.4(0.002) 4.546(0.0004) 

94.4(0.003) 4.583(0.0005) 

5 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.8(0.003) 4.701(0.0005) 

93.8(0.003) 4.771(0.0007) 

93.5(0.003) 4.898(0.0008) 

94.6(0.002) 4.817(0.0003) 

94.6(0.002) 4.859(0.0004) 

94.4(0.002) 4.986(0.0005) 

93.5(0.003) 4.378(0.0004) 

93.6(0.003) 4.456(0.0007) 

93.5(0.004) 4.454(0.0007) 

94.4(0.002) 4.513(0.0003) 

94.4(0.002) 5.551(0.0004) 

94.4(0.003) 4.586(0.0005) 

10 100 

 

 

300 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.7(0.003) 4.699(0.0005) 

93.8(0.003) 4.768(0.0007) 

93.5(0.013) 4.896(0.0008) 

94.6(0.002) 4.811(0.0003) 

94.5(0.002) 4.861(0.0004) 

94.5(0.002) 5.002(0.0005) 

93.6(0.003) 4.394(0.0004) 

93.6(0.003) 4.470(0.0007) 

93.5(0.004) 4.462(0.0007) 

94.3(0.002) 4.504(0.0003) 

94.4(0.002) 4.552(0.0004) 

94.4(0.003) 4.585(0.0005) 
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Conclusion 

A number of studies have been conducted to construct bootstrap 

prediction intervals for short memory time series models. In this 

study we investigate the AR sieve bootstrap to construct 

prediction intervals for long memory time series models. The 

investigation has been carried by conducting simulation study 

for a number of long memory models using three different error 

distributions the normal, the exponential and the t-distribution 

with five degrees of freedom. The results show that the 

bootstrap prediction interval has good coverage for all the error 

distributions. The bootstrap prediction interval also performs 

well for the real data example. Figures 1-4 show one, three, five 

and ten step-ahead sieve bootstrap prediction intervals 

respectively. The sample is fixed to be 300 for a nominal 

coverage of 95%. 

 

 
Figure-1 

One Step-Ahead 95% Prediction Intervals 
 

 
Figure-2 

Three Step-Ahead 95% Prediction Intervals 

 

 
Figure-3 

Five Step-Ahead 95% Prediction Intervals 

 
Figure-4 

Ten Step-Ahead 95% Prediction Intervals 

 

Note: (o) is real data point and zig-zag lines show the upper and 

lower limits of the sieve bootstrap prediction intervals. 
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