

Research Journal of Recent Sciences Vol. **4(3)**, 142-149, March (**2015**)

Evaluation of Lean Manufacturing Factors in ATO Industries, Case Study: Rose Fireplace Industry

Fazli Safar¹ and Saddaee Maryam²

¹Member of scientific board, Imam Khomeini Int. University, Qazvin, IRAN ²Department of Science, Imam Khomeini Int.University, Qazvin, IRAN

Available online at: www.isca.in, www.isca.me Received 30th October 2013, revised 26th January 2014, accepted 12th December 2014

Abstract

Manufacturers need to optimize operations. One of the best solutions for optimizing is achieving the highest possible degree of adaptability to lean manufacturing characteristics. The basic lean manufacturing elements include production flow, organizing, process control, measurement and supporting. Among these elements, measurement is of special significance. Measurement in lean manufacturing refers to determining the rate of adaptability in a system with lean manufacturing characteristics and hence, determining the degree of compatibility with criteria and characteristics of lean manufacturing, so manufacturers should constantly assess the degree of adaptability of their systems to lean manufacturing criteria. Purpose– The purpose of this paper is determining ATO systems leanness. Most previous studies have been done in Manufacturing to Order and Manufacturing to Stock industries, while the present study has been done in Assembly to Order or ATO industries. Design/methodology/approach– In this study, using dimensional analysis approach has been presented model that calculate degree of adaptability to lean manufacturing characteristic in Assembly To Order industries. Findings– The case study of this research is relevant to Rose Fireplace Industry. In this regard, lean manufacturing factors were divided into 6 main factors and 35 sub-factors. Findings indicate the degree of adaptability of Rose Fireplace Assembly Industry to lean manufacturing characteristics is 0.744. Originality/value– In this paper, ATO systems degree of adaptability to lean manufacturing characteristics is considered.

Keywords: Lean manufacturing, manufacturing to order (MTO), manufacturing to stock (MTS), assembly to order (ATO), leanness, dimensional analysis approach.

Introduction

The concept of lean production has been well spread as a conceptual framework popularized in many industrial companies since the early 1990s¹. The concept of lean production is a multi-dimensional approach that encompasses a wide variety of management practices. Lean, or waste reduction efforts, has been a prominent business strategy in the past two decades². Intensification of competitive forces limits the ability of companies to simply mark up prices based on cost increases. It has made cost control, rather than pricing power, the driving force behind corporate profit margins and earnings growth³.

There is relatively published empirical and scientific evidence about the implementation of lean practices and the factors that may influence implementation. Most of the papers on the topic of lean production system focus on the relationship between implementation of lean manufacturing and the performance⁴. The core thrust of lean production is that these practices can work synergistically to create a streamlined, high quality system that produces final products at the pace of customer demand with little or no waste⁵.

An investigation on implementation of practices related to Just-In-Time (JIT), Total Quality Management (TQM), and Total

Preventive Maintenance (TPM) programs has shown their impacts on operational performance⁶. Other interesting methodologies are the ones used in some management prizes (Society of Manufacturing Engineers, 2006). Conceptual research continues to emphasize the importance of empirically examining the effect of multiple dimensions of the lean supply chain⁷. Lean production is not confined to the activities occurring in the manufacturing process of a company. Instead, it relates to activities ranging from product development, procurement and manufacturing and distribution, forming the lean enterprise, directly related to the lean consumption⁸. In all the processes, the main concern is to find the critical value streams, to assure that value is added and waste is eliminated⁹.

Manufacturers need to optimize operations, supply chains and capitalassets¹⁰. Facilitated by advances in information technology, the pursuit of optimization has intensified the demand for speed, flexibility, waste elimination, process control, people utilization and global reach to gain competitive advantages¹¹. Recently, achieving this goal has become increasingly complicated due to the fast moving global market, budget cuts and capacity downsizing¹⁰. Hence, lean manufacturing has become a key approach to manage this complexity¹¹. Toyota Production System has become the basis for much of the optimization that has dominated manufacturers

in their developments since the last decade¹². The objectives vary, overlap and differ in their emphasis on different firmse.g., on lean production versus lean behavior¹³. Several studies have defined a portfolio of tools or techniques to implement lean manufacturing¹⁴.

The basic lean manufacturing elements include production flow, organizing, process control, measurement and supporting¹⁵. Measurement in lean manufacturing refers to determining the rate of adoptability in a system with lean manufacturing characteristics. Therefore, this measurement is aimed at determining the percentage of system adaptability with lean manufacturing criteria¹⁶.

Therefore, the main question of the research is "What is the rate of compatibility to lean manufacturing criteria and features in Assembly to Order industries? "In this article, using dimensional analysis method has been presented model that calculate degree of adaptability to lean manufacturing characteristic in Assembly to Order industries. As a case Study, to demonstrate the application of model, Rose Fireplace Industry which is one of the largest and most advanced leaders in fireplace industry is investigated.

The Research Literature

After publishing the results of "Int. Motor Vehicles Program" by Massachusetts Institute Technology, other studies have been introduced on the measurement of lean manufacturing factors. Here, some of the major research works are briefly reviewed.

Organizational assessment is another name that conducted by Padova University ¹⁷. In this study, factors and characteristic of organizing labor has been studied from the perspective of lean manufacturing. One of the research works on lean manufacturing has been conducted by Archie Lockamy. This research shows the effect of performance measurement systems in selecting factories and manufacturing companies in the world. According to this research, the most important factor in failure of lean production is the lack of a standard performance measurement system. Repair and maintenance, logistic and support systems have been considered as important tools to reduce waiting time for product delivery to customer¹⁸.

Another study has been performed in this field refers to the model for measuring the degree of leanness in manufacturing companies. This model is used for operationalization of lean manufacturing principals. In this research; variables such as removing waste, continuous improvement, zero defect, on time delivery, multi-function teams, decentralization and integration of activities, have been known as variables of lean manufacturing. The purpose of this study is to operationalize the concepts of lean manufacturing. This model evaluates the degree of leanness in manufacturing companies by focusing on management's commitments¹⁹.

Among other research can be pointed to Machado and Pereira researches that a practical model has been presented to assess the rate of leanness supply chain at organizations by them. To evaluate the rate of leanness supply chain, the presented model focuses on 3 elements: designing manufacturing systems, controlling production systems and managing improvement at production systems. The presented model in this research has considered six factors including lean development factors, lean logistics, lean manufacturing, lean distribution, lean enterprise and lean consumption factor to determine the rate of leanness of supply chain. In this model, the emphasis is on customer participation, lean delivery and flexibility. In addition to customer participation, zero inventory principle is especially emphasized in implementing the principles of just in time manufacturing²⁰. Also a consolidation model was proposed for small and medium sized systems to improve lean enterprises by Wilson and Roy. The purpose of this model has been indicated as cost saving, increasing production efficiency and reducing inventory levels in the small and medium-sized systems to improve lean logistics. This purpose finally leads to present a model called Double Freight Consolidation Model (DFCM). This model has been recognized as a profitable model to increase efficiency and reduce cost in the supply chain. In this research, full participation and corporation of customers, vendors, carriers and supporters have been introduced as essential elements for improving lean logistics and achieving successful lean logistics in small and medium-sized systems. Successful lean logistics depend on factors such as long-term participation, rapid exchange of information and knowledgeable salespeople²¹.

Another study has been performed in this field refers to fuzzy systematic method. This method has been introduced to determine the leanness of manufacturing system by Bayou and Korvin. The proposed method is based on seven characteristics: being dynamic, objective, comprehensive, integrative, relative, and based on fuzzy logic. The main objectives of this research have been configured in two goals, determining the leanness of manufacturing system as well as developing a systematic method for measuring the leanness of manufacturing system. In this research, a case study has been done to determine the leanness of Ford Motor and General Motors. The results of this study demonstrate a 17% superiority of Ford Company compared to General Motors Company²².

Among other research can be pointed to William M. feld researches. M. feld divided primary elements of Lean Manufacturing into 5 groups: production flow, organizing, documentation, procurement, process control and introduced overall 33 constituent elements of lean manufacturing. William M. feld discussed 25 main questions to evaluate companies and based on this scale, he evaluated the rate of adaptability to lean manufacturing characteristics in these systems.

Another study has been performed in this field refers to Nestle Company researches in United Kingdom²³. This research points

to operational complexity of a lean manufacturing process. Continuous improvement and reformation of organizational culture has been announced as the most important factors in successful implementation of lean manufacturing. Another study confirming the findings of this research is the research work of Murray. Murray dissected the impact of training and team participation in continuous improvement. He suggested that the changing nature of the work is another important factor in achieving lean manufacturing ²⁴. Also another research work conducted by Warwick University and Massachusetts Institute Technology²⁵ provided self-assessment for lean enterprises. This method has emphasized on three factors: leadership, process lifetime, capability of foundation. In the next section will be to introduce dimensional analysis method as a method of determining the system degree of adaptability to lean manufacturing characteristics.

Presenting dimensional analysis approach: In this approach, presented by Willis and Houston, different features and characteristics of various sizes and significance convert to a single unit. Reforming this technique into the standard form, it can be used to assess the lean manufacturing main factors.

The initial model of this method was used by Willis and Huston in 1990 for choosing some suppliers as in equation-1

$$DA = \prod_{i=1}^{n} \left(\frac{x_i}{y_i} \right)^{w_i}$$
(1)

Where W_i is the weight of each factor, X_i is performance criterion score of supplier No. 1, Y_i indicates performance criterion score supplier No. 2 and n is the number of factors. Willis and Huston used the technique as a mathematical technique to compare two suppliers. If the result of the above equation is greater than 1, supplier No.1 will be selected, otherwise the choice is supplier No.2. In this model, to compare n suppliers of the model, n-1 comparisons should be made to identify the best supplier. In 1993, Willis improved the model and introduces equation-2 as follows:

$$DA = \Sigma w_i \sqrt{\prod_{i=1}^n \left(\frac{X_i}{Y_i}\right)^{w_i}}$$
(2)

In the equation above, the variables are the same as the initial model, except for Y_i which is the performance criterion score ($Y_i=9$). So, in this model, each supplier would be compared to the standard criterion. For determining the degree of adaptability of entire system, formula-3 is presented as follows:

$$DALean = \left(\frac{DOA_1}{DOA_{1s}}\right)^{w1} \times \left(\frac{DOA_2}{DOA_{2s}}\right)^{w2} \times \left(\frac{DOA_3}{DOA_{3s}}\right)^{w3} \times \left(\frac{DOA_4}{DOA_{4s}}\right)^{w4} \times \left(\frac{DOA_5}{DOA_{5s}}\right)^{w5} \times \left(\frac{DOA_6}{DOA_{6s}}\right)^{w6}$$
(3)

In the next section, as Case Study, rate of leanness for Rose Fireplace Industry is calculated by dimensional method.

Case Study: Calculation of rate of leanness for Rose Fireplace Industry

The case study of this research has been conducted in Rose Fireplace Industry. This industrial unit produces a variety of fireplaces and its subsets. Rose Fireplace Industry is supplier of various types of cast iron designed fireplaces and different types of stone fireplace. Assembling the three components of fireplace is provided based on customer's order, so Rose Fireplace Industry is an Assembly to Order Industry.

After several meetings with effective experts and managers, a questionnaire consisting of main criteria and sub criteria of lean manufacturing was designed. To determine the leanness of Rose Fireplace Industry, 6 main criteria and 35 sub criteria were set. The main factors include information technology, supply chain management, purchasing and logistics system, organization and leadership, marketing and sales system and quality management system factors and 35 sub criteria of subsets were configured as described in table-1 to 6.

 Table-1

 Sub factors of information technology system

 Evaluation factors of " information technology system"
 intelligence of information system

 Internet and network services
 Information transmission with suppliers

Centralization of customers information and suppliers at a point

Information transmission with suppliers

Table-2								
Sub factors of supply chain management system								
Evaluation factors of "supply chain management system"								
Organization relationship with suppliers								
Coordinating power of suppliers								
Stable cooperation of suppliers								
Number of suppliers								
Self-inspection of suppliers								
Suppliers interval								

	Table-3	6	

Sub factors of purchasing and logistics systems
Evaluation factors of "purchasing and logistics systems"
Despite the technical specification for purchasing items
Quality control of items and product method
Preferred quality over price
Material and products transport system
Commodity classification system
Integration supplier system

 Table-4

 Sub factors of organization and leadership systems

Evaluation factors of "organization and leadership systems"
Strategic planning
Staff participation
Perspective of human resource management
Power of concentrating and decision making
Integration of operations
Continuous Improvement
Management attitude to training

 Table-5

 Subfactors of marketing and sales system

Evaluation factors of "marketing and sales system"										
Sales force automation										
Marketing automation										
Customer satisfaction evaluation										
Customer relationship management										
Customer service management										
Product development(a structure to development and										
marketing growth)										

 Table-6

 Subfactors of quality management system

Evaluation factors of " quality management system"
Inspection of items and products method
Inspection during assembly
Using statistical process control technique
Utilizing the ISO series of standards
Applying the principles of quality assurance

In the next step, the paired comparisons and scoring are developed to determine weight and also the score of main and sub factors by all managers and effective experts. Table-7 indicates the weight of sub factors and table-8 indicates the weight of main factors. Average scores of sub-factors are shown in table-9, too. It should be noted that weight of sub factors is determined based on paired comparisons done by experts and efficient managers and average score of sub factors is presented by all experts and effective managers. The average score for each sub factor has been applied as X_i in Willis method. To determine the higher or lower priority of each sub factor, paired

comparison has been performed with the scale of respectively 9 to 1/9.

In the final step, the degree of adaptability of main factors to lean manufacturing characteristics has been calculated based on the equation-2, using tables-7,9 as follows:

DA (Information Technology) = 0.700, DA (Supply Chain Management) = 0.733, DA (Organize and Leadership) = 0.749DA (Procurement Management) = 0.735, DA (Quality Management) = 0.746, DA (Marketing and Sales) = 0.764

Also, the degree of adaptability of entire system to lean manufacturing characteristics has been calculated based on the equation-3, using table-8 as follows:

DA Total =0.744

It should be noted that in equation-2, the total weight of sub factors for a main factor equals 1. In the next section, the validation of model is discussed.

Model validation: Model validation is an important process coming before analyzing the outputs of a model. If the model is invalid, decisions made based on the outputs could not be valid²⁶. There are many techniques to validate models, such as: degenerate tests, event validity, face validity, internal validity, validation by comparing with a previously validated model, Experts validation and etc.²⁷. In this study, as validation method, experts would determine the validity of the model. After determining the compatibility of lean manufacturing factors in Rose Fireplace Industry, marketing and sales system, organization and leadership system, quality management system, procurement management system, supply chain management system and information technology system were respectively ranked first to sixth²⁸. For determining the validation of model, these results were presented to experts and effective managers. Expert group opinion demonstrates the accuracy and validity of results²⁹. This means, from the view of expert group, marketing and sales system, organization and leadership system, quality management system, procurement management system, supply chain management system and information technology system are the first to sixth place of importance in achieving lean manufacturing characteristics³⁰. Expert group opinion exactly confirms the results of implementing dimensional analysis model in Rose Fireplace Industry. Most important results of the study are presented as conclusions and future research suggestions in next section.

Conclusion

The results of dimensional analysis method have been developed based on main factors in Rose Fireplace Industry Indicate the degree of adaptability of this system to lean manufacturing characteristics is 0.744.

Weight of sub factors of main factors based on paired compressions													
Sub	Weight		Sub	Weight		Sub	Weight	Sub	Weight		Weight		Weight
factors of		the	factors of		the	factors of	of the	factors of		Sub	of the	Sub factors	of the
informati			supply	factor		purchasin	factor	organizati	factor	factors of		of quality	factor
on		on	chain	based	on	1	based on	on and		marketing		manageme	based on
technolo	paired		managem	paired		g and logistics	paired	leadership	paired	and sales	paired	nt system	paired
gy	compre	ess	ent	compre	ess	system	compress	system	compress	system	compress	nt system	compress
system	ion		system	ion		system	ion	system	ion		ion		ion
Intellige			Organizat			Despite the				0.1		Inspection	
nce of			ion			technical		с ·		Sales		of items	
informati	.245		relationsh	.291		specificati	.372	Strategic	.388	force	.297	and	.423
on			ip with			on for		planning		automatio		products	
system			suppliers			purchasin				n		method	
						g items							
Internet			~			Quality							
and			Coordinat			control of		Staff		Marketing		Inspection	
services	.334		ing power	.045		items and	.131	participati	.057	automatio	.251	during	.169
via			of			product		on		n		assembly	
network			suppliers			method							
Informati			C(-1.1.					Perspectiv		0		Using	
on			Stable			Preferred		e of		Customer		statistical	
transfer	.217		cooperati	.330		quality	.283	human	.082	satisfactio	.077	process	.069
with			on of			over price		resource		n 1 dian		control	
suppliers			suppliers			-		manageme		evaluation		technique	
Focusing								nt				-	
customer						Material		Power of		Customer			
s			Number			and		concentrat		relationshi		Utilizing	
informati	.091		of	.039		products	.063		.269	р	.102	the ISO	.169
on and			suppliers			transport		decision		managem		series of	
suppliers						system		making		ent		standards	
at a point						-)		8					
Informati						Commodi						Applying	
on			Self-			ty		Integratio		Customer		the	
transfer	.114		inspection	.075		classificat	031		.096	service	.079	principles	.170
with			of	.075		ion	.051	operations	.070	managem	.017	of quality	.170
customer			suppliers			system		operations		ent		assurance	
S						system							
												Product	
										Continue		developme	
			Cum 1			Integratio				Continuou		nt(a	
			Suppliers	.321		n supplier	.122			S Immerica	.055	structure to	.193
			interval			system				Improvem		developme	
										ent		nt and	
												marketing	
										Mongara		growth)	
										Managem			
										ent	.051		
										attitude to			
										training			

Table-7	
Weight of sub factors of main factors based on paired compressi	ons

Degree of adaptability of marketing and sales factor is 0.764 and this factor has the maximum rate of adaptation to lean manufacturing characteristics and information technology factor has the minimum rate of adaptation. Also organization and leadership, quality management, purchasing and sales management and supply chain management factors with adaptation rate of .749, .746, .735, .733 are respectively in second to fifth place of adaptability to lean manufacturing characteristics. Result of this research proves high accuracy, validity, efficiency and delicacy of model in determining the rate of leanness in a system. Case study of the research has been done in Rose Fireplace Industry relevant to Assemble to Order (ATO) industries. Future researches works can use the current method to determine the rate of leanness in Make to Stock (MTS), Make to Order (MTO) and Engineer to Order (ETO) industries.

14016-0										
Weight of main factors bas	ed on paired comparisons									

Main factors	Weight of factors
Information technology system	.048
Supply chain management system	.203
Purchasing and logistics system	.159
Organization and leadership system	.248
Marketing and sales system	.216
Quality management system	.217

Average scores of sub-factors											
Sub factors of informat ion technolo gy system	Weight of the factor based on paired compress ion	Sub factors of supply chain managem ent system	factor based on	Sub factors of purchasi ng and logistics system	Weight of the factor based on paired compress ion	Sub factors of organizat ion and leadershi p system	Weight of the factor based on paired compress ion	Sub factors of marketing and sales system	Weight of the factor based on paired compress ion	Sub factors of quality managem ent system	Weight of the factor based on paired compress ion
Intelligen ce of informati on system	5.75	Organizat ion relationsh ip with suppliers	7.75	Despite the technical specificat ion for purchasin g items	7.33	Strategic planning	6.75	Sales force automation	7.67	Inspection of items and products method	6.33
Internet and services via network	7.25	Coordinat ing power of suppliers	5.25	Quality control of items and product method	8.67	Staff participati on	8	Marketing automation	8.33	Inspection during assembly	8
Informati on transfer with suppliers	6.25	Stable cooperati on of suppliers	7.5	Preferred quality over price	7.33	Perspectiv e of human resource managem ent	5.25	Customer satisfaction evaluation	6.67	Using statistical process control technique	2.67
Focusing customer s informati on and suppliers at a point	4.5	Number of suppliers	5	Material and products transport system	5.67	Power of concentrat ing and decision making	8	Customer relationshi p manageme nt	3.33	Utilizing the ISO series of standards	7.67
Informati on transfer with customer s	6.75	Self- inspection of suppliers	8.25	Commodi ty classificat ion system	7.67	Integratio n of operations	7	Customer service manageme nt	3.67	Applying the principles of quality assurance	8.33

 Table-9

 Average scores of sub-factors

Sub factors of informat ion technolo gy system	based on	Sub factors of supply chain managem ent system	factor based on	Sub factors of purchasi ng and logistics system	tactor	10n and leadershi	Weight of the factor based on paired compress ion	Sub factors of marketing and sales system	Weight of the factor based on paired compress ion	Sub factors of quality managem ent system	factor based on
		Suppliers interval	4.5	Integratio n supplier system		Continuo us Improvem ent	7.5	Product developme nt(a structure to developme nt and marketing growth)	8.67		
						Managem ent attitude to training	2.75				

References

- 1. Womack J., Jones D. and Roos D., The machine that changed the world : The story of Lean production, New York : Simon and Schuster, (1990)
- 2. Ohno T., The Toyota production system : Beyond largescale production, New York : Productivity Press., (1988)
- 3. Cooper J.C., A stronger economy?, Yes. Higher inflation? No, Business Week, 40(20), 25–26 (2007)
- **4.** White R.E., Pearson J.N. and Wilson J.R., JIT Manufacturing : A survey of implementation in small and large US manufacturers, *Management Science*, **45**(1), 1–15 (**1999**)
- 5. Shah R. and Ward P.T., Lean manufacturing : context, practice bundles, and performance, *J. of Operations Mgmt.*, **21**, 129–149 (**2003**)
- 6. Cua K.O., McKone K.E. and Schroeder R.G., Relationships between implementation of TQM, JIT, and TPM and manufacturing performance, *J. of Operations Mgmt.*, **19(2)**, 675–694 (2001)
- Mistry J., Supply Chain Management : A Case Study of an Integrated Lean and Agile Model, *Qualitative Research in Accounting and Management*, 2(2), 193-215 (2005)
- 8. Achanga P., Shehab E., Roy R. and Nelder G., Critical success factors for lean implementation within SMEs, *J. of Manufacturing Technology Mgmt.*, **17(4)**, 460-471 (2006)
- 9. Rother M. and Shook J., Learning to See : Value Stream Mapping to Add Value and Eliminate Muda, Lean Enterprise Institute, *Brookline, MA*., (2003)

- 10. Pagatheodrou Y., The price of leanness, *Industrial* Management, 47(1), 8–14 (2005)
- **11.** Allway M. and Corbett S., Shifting to lean service : Stealing a page from manufacturers' playbooks, *J. of Organizational Excellence*, **21**(**Spring** (2)), 45–54 (**2002**)
- 12. Liker J.K., Introduction : Bringing lean back to the U.S.A., In : Liker, J.K. (Ed.), Becoming Lean, Inside Storied of U.S. Manufacturers, Productivity Press, Portland, OR, 3–40 (1998)
- 13. Hall R.H., Lean and the Toyota Production System, Target, (2004)
- 14. Emiliani M.L., Cracking the code of business, Management Decisions, 38(2), 60–79 (2000)
- **15.** Rother M. and Shook J., Learning to See : Value Stream Mapping to Add Value and Eliminate Muda, Lean Enterprise Institute, Brookline, MA., (**2003**)
- 16. Dangayach G. and Deshmukh S., Evidence of manufacturing strategies in Indian industry : A survey, *Int. J. of Production Economics*, **83**, 279–298 (**2003**)
- 17. Biazzo Stefano and Panizzolo Roberto., The assessment of work organization in Lean Production : The relevance of the worker's Perspective, Integrated manufacturing system, University of Padova, Italy, **11(1)**, **(2000)**
- 18. Lockamy Archie., A study of Operational and Strategic Performance Measurement System in Selected World Class Manufacturing Firms An Examination of Lineages for Competitive Advantage (Operational Performance Measurement, Manufacturing Strategy), University of Georgia, (1995)
- 19. Horacio Soriano, Meier and Merida Venezuela Paul L., A

model for evaluating the degree of leanness of Manufacturing firms, integrated manufacturing system, University of Birmingham, Birmingham, UK, **13(2)**, **(2002)**

- Machado V. Cruz and Pereira A., Modeling Lean Performance, University Nova of Lisboa, Portugal, (2008)
- 21. Wilson Mark and Roy Ram., Enabling lean procurement
 : A consolidation model for small-and medium-sized enterprises, J. of Manufacturing Technology Mgmt., 20(6), (2009)
- 22. Bayou M.E. and Korvin A. de., Measuring the leanness of manufacturing systems-A case study of Ford Motor Company and General Motors, *J. of Engineering Technology Mgmt.*, (2008)
- 23. Amerald Group., Building a Lean Knowledge base-new level of skills training for Nestle UK's factory line managers bring-signi, 20(4), (2004)
- 24. Murray Peter., From continuous improvement to organizational learning Australia, The Learning organization, 10(5), (2003)

- 25. Massachusetts institutes of technology and University of Warwick., Lean enterprise self-assessment tool(Least), 1.0., (2001)
- **26.** Biazzo Stefano and Panizzolo Roberto., The assessment of work organization in Lean Production : The relevance of the worker's Perspective, integrated manufacturing system, University of Padova, Italy, **11(1)**, **(2000)**
- 27. M. feld William., Lean manufacturing, tools, techniques, and how to use them, *the st. lucie press and apices services Resource Management.*, (2001)
- 28. Rother M., Which way will you turn on the road to lean?, In: Likert, J.K. (Ed.), Becoming Lean. Productivity, Inc., Portland, OR., (1998)
- 29. Massachusetts institutes of technology and University of Warwick., Lean enterprise self-assessment tool(Least), 1.0., (2001)
- **30.** Bayou M.E. and Korvin A.de., Measuring the leanness of manufacturing systems-A case study of Ford Motor Company and General Motors, *J. of Engineering Technology Mgmt.*, (2008)