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Abstract  

The equations of particle motion in an anisotropic elastic media in the presence of the stress have been derived. These 

equations are nonlinear and in the form of twenty seven variable of displacement gradients and hence they are not applicable 

in the practical works. Due to the fact that the particle displacement is composed of two parts, the static part caused by the 

applied stress and the dynamic part due to the propagating stress wave, to linearize the equations of motion, a Taylor series 

expansion about the static deformation state is used. Three linearized components of the equations of motion have the form of 

an eigenvalue problem and its solution gives the wave velocities in the billet in the presence of stress. The analytical results 

in time delay for one dimensional stress field in a billet are compared with the experimental results and there is a reasonable 

agreement between them.  
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Introduction 

Design, protecting and confinable maintenance of structure and 

machine elements demands the highest possible strength per 

mass ratio, among other parameters. This goal cannot be 

achieved unless a through knowledge of stresses within the 

components body is at engineer's disposal. But the way of 

destructive evaluations of stress in structure or machine 

elements have been far under question and gradually will be 

abolished because destructive methods can weaken parts and 

elements. 

 

There has always been a need for test methods to measure the 

in-place stresses within the structure and machine elements. 

Ideally these methods should be nondestructive because 

destructive methods can weaken parts and elements. Between 

non destructive stress measuring methods, using ultrasonic 

waves in acoustoelasticity has been attended by many 

researchers
1-5

. In this method high frequency sound waves are 

launched into a test object under specific angles by sender 

transducer and reflected waves will be received by another 

transducer. Based on velocity and round trip time of flight 

through the material, we can obtain useful information about 

characteristic of the stress field in the body. In this research, the 

characteristics of stress field is obtained in the machine element 

with rectangular cross sections such as billets, due to 

compression, tension, bending or a partial torsion in each 

arbitrary cross section of the part. In the elastic and isotropic 

body, the wave propagation equations have been obtained both 

in tensorial
6
 and matrix

7
 forms. The equations of wave 

propagation are presented by Murnagahan
8
 for the first time. In 

this research we used matrix formulation of Green
7
. In the case 

of infinitesimal deformation, the initial and final coordinates of 

a material point in the undeformed and deformed states 

respectively, cannot be interchanged. Therefore, the equations 

of motion may be derived either in Lagrangian formulation 

(undeformed coordinates) or in Eulerian formulation (deformed 

coordinates). Here, we use Lagrangian formulation. The motion 

equations obtained in this way, are nonlinear partial differential 

equations which we use a method of perturbation to linearize 

them. 

 

Equations of Motion 

Taking the point ξj , ( j = 1, 2, 3 ) as the Lagrangian coordinate , 

the motion equations in these coordinates,  without body forces,  

can be obtained as:  

ijij u
..

0, ρσ =   ;   i = 1, 2, (1) 

The comma (,) denotes partial derivative with respect to ξj`s, 

where summation convention on repeated index is intended, 

and:  

iii xu ξ−=       ; 
2

2..

t

u
u i

i

∂

∂
=    (2) 

Where xi = xi (ξ1, ξ2 , ξ3) denotes the coordinates in the deformed 

state. 

The stress and infinitesimal strain is defined by Murnagahan as: 

kj

kiikij
E

u
∂

∂
+=

ϕ
δσ )( ,            ; 

         i = 1, 2, 3    ;     j = 1, 2, 3     (3) 
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( )( )[ ]kjjljlklklkj uuE δδδ −++= ,,
2

1
     ; 

    j = 1, 2, 3    ;    k = 1, 2, 3    (4) 

 

Murnagahan has shown that the elastic energy density Φ for an 

isotropic solid is a function of the three strain invariants I1, I2, I3 

of the Lagrangian strains Eij, without considering initial strains, 

could be written as: 

2 22 3
2 2

1 2 1 1 2 3
2 3

l m
I I I mI I nI

λ µ
µ

+ +
Φ = − + − +   (5) 

Where: 

1 jj
I E= ; 

2

1
( )

2
jj kk jk jk

I E E E E= −  ;    
3

det( )
jk

I E=   (6) 

Expanding Φ  as a function of Ekj by Mathematica software and 

obtaining the nines derivatives 
E

kj

∂Φ

∂
  and replacing  them in 

the equation (3), we obtain σij , then differentiating it with 

respect to ξj and replacing into equation (1) for i =1 to write the 

motion equation in the  ξ1 direction, we obtain: 

ρ0 1

..

u = ( 2µ+λ )[ u1,1 + u1,11+ u3,13  + u2,12 + (u1,22 +3u1,11 +  u1,33 + 

u3,13 + u2,12) + u2,11u2,1 + u3,11u3,1 + u1,2 (2u1,12 +u2,22 + u3,23 ) + u2,2 

(u1,22 +u1,11 + u1,33 + u2,12 ) + u3,12u3,2 + u1,3 (2u1,13 + u2,23 +u3,33   ) 

+ u2,13u2,3 + u3,3 (u1,22 +u1,11 + u1,33 + u3,13 )] + µ [– u1,1 ( u2,12 + u3,13 

)+ u1,22 + u1,33  – u3,13– u2,12 + u2,1 (2u1,12+u2,22 + u2,33 ) + u3,1 

(2u1,13+ u3,22  + u3,33 ) + u1,2 (u2,33 + u2,11  –u3,23 ) + u2,2 ( -2u1,33 –

2u1,11 –u2,12 ) + u3,2 ( 2u1,23 – u3,12 ) + u1,3 (u3,22+ u3,11  – u2,23 ) + 

u2,3 ( 2u1,23 – u2,13 ) + u3,3 ( -2u1,22 –2u1,11 –u3,13 )] + 2( l + 2m 

)[(u1,1+u2,2+u3,3 )(u1,11 +u2,12 +u3,13 )] + m[u1,1 (u1,22 + u1,33 – 3u2,12 

– 3u3,13 ) + ( u2,1 + u1,2)( 2u1,12 + u2,11 + u2,22 +  u3,32 ) + u3,1 (2u1,13 

+u3,11 + u3,33 +  u2,23 ) + u2,2 (u1,22 - 4u1,11 + u1,33 – 3u2,12– 5u3,13  ) 

+ u3,2 (u3,12 + u2,13 ) + u1,3 ( u3,11 +2u1,13 + u3,33 +  u2,23 ) + u2,3 

(u3,12+ u2,13) + u3,3 (u1,22- 4u1,11  + u1,33 – 3u3,13 – 5u2,12 )] + 
1

4
n 

[(u1,2 +u2,1 )(u2,33 – u3,23) + ( u3,1 + u1,3 )( u3,22 – u2,23 ) + (u3,2 + u2,3 

)( 2u1,23 – u3,12– u2,13  ) + 2u2,2 ( u3,13 – u1,33 ) + 2u3,3 ( u2,12 – u1,22 )]

 (7) 

 

The equations of motion in the other two directions ξ2 and ξ3 

may be obtained by a circular permutation on the subscripts 1, 2 

and 3 in equation-7. These are three nonlinear partial differential 

equations with respect to 27 terms ui,j and ui,jk , that jkikji uu ,, =  

 

Linearization Process: Considering a low-amplitude plane 

wave, the components of displacement can be obtained as: 

( ){ }
jjnnnn xktiAmu −+= ωξε exp     ; 

 n = 1, 2, 3  (8) 

 

Where convention of summation is not intended on n, but is 

intended on j., xi can be written in terms of the initial 

coordinates ξn as: 

jjjx ξε )1( +=                ;             j = 1, 2, 3  (9) 

Where convention of summation is not intended on j. The 

component of the wave vector kj may also be written in terms of 

the wave number k and the wave normal direction cosines lj as: 

jjj Kll
X

k ==
π2

        ;        j = 1, 2, 3 (10) 

replacing from (9) and (10) into (8), the three displacement 

components (un) may be obtained as: 

 

Femu iwt

nnnn .+= ξε    ,  n = 1, 2, 3 (11) 

Where:  

( ) ( ) ( )[ ]{ }1 1 1 2 2 2 3 3 3
exp 1 1 1F A ik l l lε ξ ε ξ ε ξ= − + + + + +

 (12) 

Which: (εn) are strains, (ln) are the wave normal directional 

cosines and (mn) are the directional cosines of the polarisation 

vector. Equations (11) then represent the final form of the 

infinitesimal dynamic displacements superimposed upon the 

finite static displacements: 

 
d

j

s

jj uuu +=  ; 
s

j

d

j uu << ;    j = 1, 2, 3 (13) 

Having the proper form of the displacement components ready 

to be replaced into the motion equations-7, the next step is the 

linearization process. A Taylor series expansion about the static 

deformation state will be used to accomplish this. The motion 

equation in the direction of ξ1 is seen from equation-7 to be a 

function of 27 variables. That is: 
..

10
uρ = f ( u1,1 , u1,2 , ….  , u1,11  , ….  , u3,33 ) (14) 

The function f in equation-14 is analytical and may be written as 

a series of Taylor about the static-deformation-values as: 

1

..

0 uρ = f ( u1,1 , u1,2 , ….  , u1,11  , ….  , u3,33 )    

     = f (
ssssss uuuuuu 33,312,111,13,32,11,1 ,....,,,,....,,  )  

+ [( 11 12 33

1,1 1,2 3,3

....d d d
u u u

∂ ∂ ∂
+ + +

∂ ∂ ∂
    

])....
33,3

333

11,1

111 f
u

d
u

d
∂

∂
++

∂

∂
+  static  + H.O.T (15) 

Where with respect to equation-13 we can write:  
d

ji

s

jijiij uuud ,,, =−=             ; 

d

jki

s

jkijkiijk uuud ,,, =−=   (16) 

 

And the notation static implies the evaluation of the partial 

derivatives at static values. Equation-15 is then reduced to:  

1

..

0 uρ = f (ui,jk, , ui,j  ) =  f (
s

jki

s

ji uu ,, , )  
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+ [(

jki

d

jki

ji

d

ji
u

u
u

u
,

,

,

,
∂

∂
+

∂

∂
) f ]  static + H.O.T  (17) 

 

Where summation convention is intended on repeated indices. 

The first expression of equation-17 indicates the static element 

of the deformation un = εn ξn. Since 0, =s

jkiu  and the terms 

containing first-derivatives in (7) are multiplied by the second-

derivatives, it can be seen that the first expression of equation 

(17) equals to zero. That is: 

 

0),( ,, =s

jki

s

ji uuf   

 

The dynamic deformation gradients in equation-17 may be 

obtain by using equation-11 and substituting them into equation-

17 , discarding the quadratic and higher or higher order terms of 

the strains as being negligibly small and taking V
K

ω
=  the  

linearized term of the motion equation is obtained as: 

m1 { -ρ0V
2
 + 

2

1l  [ λ + 2µ + ( 4λ + 10µ + 4m ) ε1 + ( λ + 2l ) θ ] 

+ 
2

2l  [ µ + 2µε2 – ( 2µ + 
2

1
n ) ε3 + ( λ + 2µ + m ) θ ] + 

2

3l  [ µ – 

( 2µ + 
2

1
n ) ε2 + 2µ ε3 + ( λ + 2µ + m ) θ ]} + m2 { l1 l2 [ λ + µ 

+ 2( λ + µ ) ( ε1 + ε2 ) + (
2

1
n – 2m ) ε3 + ( 2l + m ) θ ]} + m3 { 

l1 l3 [ λ + µ + 2 ( λ + µ )( ε1 + ε3 ) + (
2

1
n – 2m ) ε2 + ( 2l + m ) 

θ ] } = 0 (18) 

Where:  321 εεεθ ++=     

Also the other terms of linearized motion equations may be 

written by a permutation of 1, 2 and 3 in subscripts of equation-

18. These three equations are the most general form of the 

equations of motion. 

 

Evaluation of Stress-Strain Field in the Billet: Taking billet 

as a one-dimensional body, previous equations can be simpler. 

Assuming one dimensional stress in billet and using Poisson's 

ratio, strains can be obtained as: figure-1. 

 

εε =1              ;             υεεε −== 32  (19) 

In this case, waves propagate in (1 – 3) plane only and the 

cosines of direction of the il  have values as: 

02 =l              ;              12

3

2

1 =+ ll  (20) 

 

Using above equations, the equations of motion in 1, 2 and 3 

directions can be obtained for one dimensional stress in the 

billet. Rearranging these equations as an eigenvalue problem: 

                             

0

0

00

0

3

2

1

2

03331

2

022

13

2

011

=
































−

−

−

m

m

m

V

V

V

ρλλ

ρλ

λρλ

 (21) 

 

This must hold true for any vector 

















3

2

1

m

m

m

 and ijλ  can be 

written as: 

λ11 = 
2

1l [ λ + 2µ + ( 5λ + 10µ + 4m + 2l) ε - υ ( 2λ + 4l ) ε ] + 
2

3l  

[ µ + ( λ + 2µ + m ) ε  –  υ ( 2λ + 4µ + 2m - n
2

1
) ε ] 

λ13 = λ31= l1 l3 [λ + µ + (2λ + 2µ + 2l + m) ε - υ (2λ + 2µ + 4l + 

n
2

1
 ) ε ] 

λ22 = 
2

1l [ µ + ( 4µ + λ + m ) ε - υ ( 2λ + 2µ + 2m - 
1

2
n ) ε ] + 

2

3l  

[ µ + ( λ + m - n
2

1
 ) ε  –  υ ( 2λ + 6µ + 2m ) ε ] 

λ33 = 
2

1l [ µ + ( 4µ + λ + m ) ε - υ ( 2λ + 2µ + 2m - 
1

2
n ) ε ] + 

2

3l  

[ λ + 2µ + ( λ + 2l ) ε  –  υ ( 6λ + 10µ + 4m + 4l ) ε ] (22) 

 

 
Figure-1 

Coordinate System 

 

The eigenvalues in equation-21 yield a pure shear horizontal 

(SH) wave mode, a quasi longitudinal mode and a quasi-shear-

vertical mode respectively: 

 

( )
22 2

0 1 11 33 11 33 13

1
4

2
Vρ λ λ λ λ λ= + + − + 

  
 (23a) 

22

2

20 λρ =V      (23b) 

( )
22 2

0 3 11 33 11 33 13

1
4

2
Vρ λ λ λ λ λ= + − − + 

  
 (23c) 
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In figure-2 the launch angle φ measured from the 3-axis and the 

transducer-fixture rotation angle γ measured from 1-axis. The 

angles φ and α are related through the Snell's law: 

sin sin

W
V V

φ α
=    (24) 

Where VW denotes the wave velocity in water and V is the 

velocity in the solid. 

 
Figure-2 

The various angles defining the incident and the refracted 

wave path 
 

A careful inspection of the eigenvalue problem as represented 

by equation-21 with λij given in equations-22, along with the 

Snell's law given in equation-24 reveals the fact that the wave 

velocities are dependent on the direction cosines l1, l2 and l3 of 

the wave normal and vice versa. In the other words, to 

determine the wave velocities one needs to know the direction 

cosines l1, l2 and l3 of the wave vector. However, to obtain l1, l2 

and l3, the wave velocities are required to be known a priori. 

This double-headed difficulty can be solved by incorporating 

the Snell's law into the elements of the eigenvalue problem. The 

direction cosines of the wave normal may be formed as follows: 

 

1

sin
cos sin .cos .cos

W

l V
V

φ
β α γ γ= = =  (25a)   

2

2 2 1/2

3 2

sin
cos (1 sin ) (1 )

W

l V
V

φ
α α= = − = −   (25b) 

2 2

2 1 3

sin
cos (1 ) .sin

W

l l l V
V

φ
δ γ= = − − =    (25c) 

 

The direction cosines of the wave vector are now in terms of the 

angles φ and γ may virtually vary from -90º to +90º and 0 to 

360º, respectively. However, due to the geometric and loading 

symmetry, φ needs to be varied from 0 to 90º and γ from 0 to 

180º. Equations (25 a) to (25 c) explicitly show the dependency 

of the velocity of wave on the wave path. Because of this, the 

elements λij of the eigenvalue problem (21) must undergo some 

changes to incorporate the Snell's law as explained above. 

 

Substituting from equations (25 a) to (25 c) into all of the 

equations represented by (22), one obtains: 
2

11 11 11
a f Vλ = +  

2

2

13 13 2

sin
1

W

f V V
V

φ
λ = −   (26) 

2

22 22 22
a f Vλ = +  

2

33 33 33
a f Vλ = +  

Where: 
11

( 2 ) (2 4 2 )
2

n
a m mµ λ µ ε υ λ µ ε= + + + − + + −  

22
( ) (2 6 2 )

2

n
a m mµ λ ε υ λ µ ε= + + − − + +   (27) 

33
2 ( 2 ) (6 10 4 4 )a l m lλ µ λ ε υ λ µ ε= + + + − + + +  

2

11

2

2

{[ 2 (5 10 4 2 ) (2 4 ) ]cos

sin
[ ( 2 ) (2 4 2 ) ]}

2
W

f m l l

n
m m

V

λ µ λ µ ε υ λ ε

φ
γ µ λ µ ε υ λ µ ε

= + + + + + − +

− + + + − + + −
 

[ (2 2 2 ) (2 2 4 ) ]
13

2

sin
cos

n
f l m l

Vw

λ µ λ µ ε υ λ µ ε

φ
γ

= + + + + + − + + +

 

2

22

2

2

2 ) ]cos
2

[ ( )
2

{[ (4 ) (2 2

sin
(2 6 2 ) ]}

W

n
m

n
m

f m

m
V

ε γ

µ λ ε

µ µ λ ε υ λ µ

φ
υ λ µ ε

+ −

+ + + −

= + + + − +

− + +

 

2

33

2

2

{[ (4 ) (2 2 2 ) ]cos
2

sin
[ 2 ( 2 ) (6 10 4 4 ) ]}

W

n
f m m

l m l
V

µ µ λ ε υ λ µ ε γ

φ
λ µ λ ε υ λ µ ε

= + + + − + + −

+ + + + − + + +

 

Having the λij defined as in the succession of equations-26 to 

27, the eigenvalue problem-21 may now be rearranged to: 

12

2 2

11 11 13 2

22

22 22

2

2 2
313 33 332

sin
( ) 0 1

0 ( ) 0 0

sin
1 0 ( )

W

W

m

a f V f V V
V

m
a f V

mf V V a f V
V

φ
ρ

ρ

φ
ρ

+ − −

+ − =

− + −

  
  
  
  
  
  
  
     

 (28) 

The determinant of this symmetric matrix, with all of the 

elements containing the wave velocity V, must vanish for any 
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vector mi (i = 1, 2, 3) to obtain a non trivial solution. Performing 

the operations, grouping the appropriate terms and simplifying, 

the following cubic characteristic equation in V
2
 is obtained: 

6 4 2
0

1 2 3
V a V a V a+ + + =   (29) 

Where: 
1

1

4

b
a

b
= ,

2

2

4

b
a

b
= ,

3

3

4

b
a

b
=

 
 

1 11 22 33 22 11 33 11

2

2 2

22 13 22 22 13 2

( )( ) ( ) ( )

sin
( ) ( )

W

b a f f a f a f

f f f a f
V

ρ ρ ρ ρ

φ
ρ ρ

= − − + − + −

− − − +

 

 

2 11 22 33 11 33 22 22 33

2

11 22 13

( ) ( )

( )

b a a f a a f a a

f a f

ρ ρ

ρ

= − + − +

− −
 

 

3322113 aaab =  (30) 

2

2

4 11 22 33 22 13 2

sin
( )( )( ) ( )

W

b f f f f f
V

φ
ρ ρ ρ ρ= − − − + −  

The solutions to equation (29) are as follows: 

12
2 cos

1 1
3 3

V Q a
θ

= − −  (31a) 

2 12
2 cos( )

2 1
3 3

V Q a
θ π+

= − −  (31b) 

 

4 12
2 cos( )

3 1
3 3

V Q a
θ π+

= − −   (31c) 

Where: 
1 2

(3 )
2 1

9
Q a a= −  

1 3
(9 27 2 )

1 2 3 1
54

R a a a a= − −  (32) 

1
cos

3

R

Q

θ
−

=

−

 

It is important to note that wave velocities in equations (23) and 

(31) are different. The latter, given in equations (31), 

incorporate the Snell's law, while the former, represented by 

equations (23) do not. Changes in QSV velocity as a function of 

strain for different launch angels in accordance with equation 

(31c) have shown in figure-3 for aluminum. Where φ is launch 

angle and ε is strain in 1 direction. With respect to relation 

between stress and strain as:  

( )3 2

1
2

E
µ λ µ

σ ε ε
λ µ

+
= =

+
 (33) 

Now one dimensional stress in every section of billet can be 

obtained. 

 

 
Figure-3 

Changes in QSV velocity as a function of strain 
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Figure-4 

Time Delay obtained from theoretical results 
 

 
Figure-5 

Time Delay obtained from experimental works 

 

Calculating Time Delay: Since in an ultrasonic technique the 

quantity which is experimentally measured is time of flight and 

not the velocity of propagation, Egli and Koshti
9
 defined a 

quantity called "time delay" as: 

2hCos
t

V

α
∆ =  (34) 

Figure-4 shows the time delay t∆  as a function of strain for the 

QSV mode propagating in (1-3) plane and figure-5 shows the 

corresponding variation in time delay borrowed from the 

experimental works of Egli and Koshti
9
. Both figures are for 

aluminum specimens, the variations of time delay as a function 

of strains are the same in both figures, which represent a good 

agreement between analytical results obtained in this paper and 

the mentioned experimental results. 

 

An aluminum property which is used in analytical result has 

shown in table-1. 

 

Table-1 

Mechanical properties for aluminum 

 
Density (kg/m

3
) Elastic constants *10

10
 (Pa) Elasticity Module *10

10
 (Pa) Poisson's Ratio 

ρ λ µ l m n E υ 

Aluminum 2730 5.93 2.65 -31.1 -40.1 -40.8 7.1 0.34 
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Conclusion 

At first step the motion equations are obtained as function of 

deformation gradients ui,j, ui,jk which are nonlinear. The 

nonlinear equations of motion are linearized by means of a 

method of perturbation.  So that the final linearized results, as 

equation-18, comprise such variables that can be measured 

experimentally. These variables contain the wave velocity (V), 

the principal strains (ε1 , ε2 , ε3 ), the material properties ( λ, µ, l, 

m, n ) and the characteristic of the wave vector ( l1 , l2 , l3 , m1 , 

m2 , m3 ) and. 

 

Considering one dimensional stress in the billet, Changes in 

wave propagating velocity as a function of strain for an 

aluminum specimen have shown in figure-3. Also the time delay 

as a function of strain is calculated from equation-34 and 

compared with experimental results obtained by Egli and 

Koshti
9
 which show a good agreement between them. 
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