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Abstract 

To investigate the sensitivity of the numerical results to the sphericity of the bubbles, numerical simulation of bubbly flow 

caused by the axial gas injection into a vertical cylinder is studied. The mathematical model solves transport equations for 

the variables of each phase including the interphase mass and momentum exchange. Both spherical and non-spherical 

bubbles are investigated. Therefore, two methods are used to calculate the drag coefficient. The first is the empirical 

correlation obtained from the standard drag curve. This method is suitable when the bubbles remain spherical in shape and 

the surface-tension effects are negligible. Another approach is the "dirty water" model. This model covers the complete 

range of Reynolds numbers, Weber numbers, and is suitable for the various shapes of bubbles. The predicted results are in 

good agreement with experimental data available in the literature. It is found that the numerical results computed by the 

"dirty water" model are closer to those of the experimental data. 
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Introduction 

Bubble-driven flows occur widely in industrial applications 

such as bubble columns, gas absorption, oxidation processes, 

hydrogen production, chlorine process, electroplating, metal 

purification, etc. In order to enhance the rate of transport 

between the phases in many direct contact heat and/or mass 

exchange processes, a condensable gas is often injected into a 

liquid through a submerged orifice or nozzle. They are also used 

commonly in liquid metal containers during steel making and in 

nuclear cooling equipment. Despite the extensive applications of 

this basic flow phenomenon, the design of these systems has 

been mainly based on trial and empirical methods. Hence, a 

detailed examination on the mass, momentum and energy 

transfer is essential for improving and optimizing the design of 

such industrial processes. However, due to the complexity of 

two-phase flow systems, standard formulation of the governing 

equations for bubble-driven flow has not yet been established. 

There is extensive research in the literature on the bubbly flow 

modeling and two-phase flow simulation. Some single-fluid 

models were proposed to take into account the existence of 

bubbles in liquid flows. These models considered the gas-liquid 

mixture as a single fluid with variable density caused by the 

distribution of bubbles in liquid. Since the properties of two 

fluids are combined into those of one mixture, these models 

cannot be used to predict the flow behavior of each phase. In the 

present state-of-the-art, the two-fluid model can be considered 

as the most detailed and accurate macroscopic formulation of 

the two-phase flow systems. In the two-fluid model, the gas and 

liquid phases are regarded as two interpenetrating phases, and 

each phase has its own set of conservation equations of mass, 

momentum and energy, coupled with some phase interaction 

terms. Such models receive the most attention in the literature 

since they require less knowledge about the gas distribution 

compared with single-fluid models, although some empirical 

correlations are also needed to estimate the interacting 

properties between the two phases. 
 

There are extensive experimental and computational studies 

available in the literature investigating bubbly flow 

hydrodynamics. In the recent study of Sherman et al. a two-fluid 

model coupled with population balance approach is used to 

numerical simulation of bubbly flow in a vertical isothermal 

channel¹. In their study, interfacial momentum transfer 

embraced various interfacial forces including drag, lift and wall 

lubrication. The turbulent dispersion force has also been 

accounted for appropriately. Durst et al. performed experimental 

studies on bubble-driven laminar flows by investigating liquid 

circulation and bubble's street with Laser-Doppler system
2
. In 

their experiments, the flow was established in a glass cylinder of 

100 mm i.d. with bubbles generated at a 0.5 mm dia. nozzle 

located at the centre of the bottom wall of a container. The 

cylinder was filled with castor oil of which the kinematics 

viscosity was sufficiently large to ensure liquid flow to be in the 

laminar regime. Air was passed through a well-controlled 

pressure regulator and the resulting bubbles left the nozzles at a 

steady rate of one for every 0.55 s with diameter db of about 

5.0-6.5 mm. Two depths of liquid (H=0.098 m and H=0.278 m) 

were investigated to determine the profiles of liquid and bubble 

velocities. Durst et al. also conducted numerical simulations on 
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the bubble-driven flows at which both the single-phase model 

and the two-fluid model were used. In the two-fluid model, 

momentum equations for the liquid phase were derived from the 

Navier-Stokes equation, while equations for the gas-phase were 

simplified by neglecting the viscous forces³. Celik and Wang 

used a modified drift-flux model to simulate the problem with 

the same operating parameters as the experiments by Durst et 

al
4
.It was reported that the liquid-phase circulation pattern is not 

sensitive to the actual shape of the void fraction profiles. 

Detailed predictions on liquid phase are given in their studies, 

while the corresponding ones for gas phase are not complete. 

Johansen et al  studied the fluid dynamics in bubble-stirred 

ladles by employing a Laser-Doppler system to measure the 

axial and radial mean velocities of liquid phase
5
. Air was 

supplied through a porous plug placed in the bottom wall of a 

cylindrical Perspex-water model of a ladle. However, no 

measurement on the gas phase was conducted. Johansen and 

Boysan proposed a mathematical model to describe the fluid 

flow in the bubble-stirred ladle at which Eulerian and 

Lagrangian methods were used to analyze the liquid and gas 

phases, respectively
6
. A limited number of comparisons were 

conducted between simulations and experimental results of the 

liquid phase, but no information on the gas phase was reported. 

Castillejos and Brimacombe studied the plume formation and 

liquid circulation induced by gas injection at the bottom of 

cylindrical water containers. They developed an electro-

resistivity probe to measure the detailed bubble characteristics 

such as gas volume fraction, bubble velocity and size
7
. In 

addition, the axial and radial components of the liquid velocity 

surrounding the plume were measured by means of a Laser-

Doppler system. Jinsong Hua et al
8
. developed a modified two-

fluid model and applied it to numerical investigation of bubbly 

flow in a cylinder with bottom gas injection, assuming rigid-

surface spherical bubbles. In addition, they used the same 

operating parameters as the experiments by Durst et al.. In a 

range of two-fluid model, Mat et al. and Kemal Aldas used a 

two-fluid mathematical model for hydrogen production in a 

forced flow of the electrochemical system and found that the 

model successfully captures the main characteristics of the 

electrolysis process
9,10

. Tomomi Uchiyama simulated the bubbly 

flow around the cylinder by an incompressible two-fluid 

model
11,12

. A finite element method is applied to solve the 

model in conjunction with the Arbitrary Lagrangian–Eulerian 

(ALE) scheme considering the moving boundary of 

Uchiyama
13

. He found that the increase of the damping ratio in 

the bubbly mixture is attributable to the phase lag of the drag 

force acting on the cylinder behind the cylinder displacement. 

 

A numerical study is carried out to comprehend growth and 

movement of spherical bubble during foam processing by 

Gregory Rosebrock et al The numerical model is based on a 

level set technique for capturing the phase interface. It was 

found that the increase of initial bubble radius causes an 

increase in both the bubble growth rate and movement
14

. The 

dynamical processes of a Newtonian spherical drop rising freely 

through shear-thinning fluids expressed by the generalized 

Cross-Carreau model were considered experimentally and 

computationally by Mitsuhiro Ohta et al. The local effects of 

shear-thinning on the drop motion, which are hard to evaluate 

from an experimental approach, are clearly revealed by the 

numerical results
15

. Chen et al.
 
applied a non-spherical model 

for bubble formation coupled with phase change at a submerged 

nozzle in a flowing sub cooled liquid
16

. The model was 

attempted to calculate the instantaneous shape of the steam 

bubble during its formation and to determine the bubble size at 

detachment, frequency of bubble formation, total steam flow 

rate as well as steam condensing rate. 

 

The major aim of present study is to investigate the sensitivity 

of the numerical results to the sphericity assumption for the 

bubbles in bubbly flow regimes. Therefore, we use a two-fluid 

mathematical model to allow the mass and momentum transfer 

between two phases in the numerical simulation of bubbly flow 

in a vertical cylinder. Experimental studies available in the 

literature have shown that typical sizes of the bubbles formed in 

the cylinder are in the millimeter regime and their shapes, 

during formation are generally non-spherical
2,16

. Typically, a 

bubble starts off as a hemisphere, and then becomes 

approximately spherical as it expands, and finally attains the 

shape of an irregular ellipsoid with a neck. Due to the large 

equivalent diameters of bubbles (db=6mm), they are of high 

Weber number, meaning that they are deformable and their 

dynamics is dependent upon their surface tension. The large 

bubbles have a high tendency of breaking up due to their low 

surface tension 
17

, but we neglect bubble break-up in the present 

work. Both the spherical and non-spherical bubbles are 

investigated. Therefore, the two methods are applied to calculate 

the drag coefficient. The first method, which has been used in 

many researches, is the empirical correlation of Simonin et al., 

obtained from the standard drag curve
18

. This method is suitable 

for rigid surface bubbles that remain spherical in shape and their 

surface-tension effects are negligible, such as small bubbles 

(db<1mm) moving in contaminated fluid, or fluid containing 

surfactants 
19,20

. An alternative method that assumes a non-rigid 

surface is the "dirty water" model of Wallis et al. 
21

. This model 

covers the complete range of Reynolds numbers, Weber 

numbers, and the various shapes of bubbles
22,23

. 

 

Finally, the predicted results have been compared with the 

experimental results of Durst et al. It is found that the numerical 

results computed by the "dirty water" model are closer to those 

of the experimental data
2.
. 

 

Methodology 

Physical problem: The schematic sketch of problem 
considered is given in Fig. 1. In this figure, r and z represent the 
radial and axial coordinates, respectively; v and w stand for the 
velocity components in radial and axial directions, respectively. 
In such a system, air is injected into a liquid bath (with a depth 
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of H and a radius of R) from an orifice located at the bottom 
wall of a cylindrical vessel at a steady state flow rate. The 
cylinder is filled with castor oil of which the kinematic viscosity 

( s
m

l

2310699.0 −×=υ
) is sufficiently large to ensure liquid 

flow to be in the laminar regime. The actual dimensions of the 
liquid container and gas injection rates are specified according 
to the available experimental data of Durst et al.

2
. The 

configuration parameters for the simulation are listed in table-1. 

 
Figure-1 

Schematic diagram of the problem 
 

Table -1 
Physical configuration for the laminar bubble-driven flow 
Radius of 
cylinder (R) 

0.1 m Bubble diameter 
(db) 

6*10-3 m 

Liquid depth 
(H) 

0.098 m Gas injection 
rate (Q) 

2.6*10-7 
m3/s 

Density of 

liquid ( lρ
) 

960.3 
kg/m3 

Gas density ( gρ

) 

1.29 
kg/m3 

Viscosity of 

liquid ( lµ
) 

0.6712 
Ns/m2 

Viscosity of gas 

( gµ
) 

1.64*10-5 
Ns/m2 

 
Governing equations: For numerical analysis, the following 
assumptions were utilized: i. The mass transfer between the 
liquid and gas phases exist. ii. The liquid and gas phases are 
treated as incompressible fluid. iii. The coalescence and break-
up of the bubbles are not considered. iv. No turbulence model is 
employed. v. The bubbles are assumed to be in the same size. 
 
In order to represent the flow behavior in the system, a two-
phase mixture of the liquid and gas was considered. The phases 
were assumed to share some spaces in proportion to their 
existence probabilities in such a way that their sum of the 
volume fractions would reach to a unity in the flow field. This 
assumption can be expressed mathematically as: 
 

(1) 
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Where gl αα ,
 are the volume fractions of the liquid and the 

gas, respectively. The zone-averaged quantities are obtained 
through the solution of separate transport equations for each 
phase. Within this framework and above assumptions, the 
governing equations for the two-phase flow system can be 
expressed in cylindrical coordinates and conservative form as 
follows: 
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Where subscript, i represents the phases and takes the value of l 
and g refer to the liquid and the gas phases, respectively, in this 
and subsequent formulations. The term on the right hand of the 
above equation represents mass diffusion between the two 
phases at the liquid–gas interface which is calculated as

8
: 
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Where iD
represents the molecular diffusivity of phase i and 

may be expressed as 
9,10,11

: 
(4) ,,ieffiD µ=

 

Where ieff ,µ
 is the effective viscosity of phase i and expressed 

as 
9,10,11

: 
(5) ,, iieff µµ =

 

Where iµ
 is the thermodynamic viscosity of phase i. 

 
r-momentum:  
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z-momentum:  
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gFb ρ=
 is the buoyancy force where g being the gravity 

vector. rF
 in both momentum equation is interface friction term 

and represents momentum exchange between the phases per unit 

volume. The phase interaction forces may include drag forces, 

lift forces and virtual mass forces. Only the effect of drag forces 

is considered in this study.  Interface friction term can be 

expressed as
8
: 

(8) 
Re,

4

3
2
b

l
lgdr

d
CF

µ
αα=

 

Where dC
 is the drag coefficient. A large number of 

formulations exist for estimating the drag coefficient. In this 

study both spherical and non-spherical bubbles are investigated. 

Therefore, the two methods are used to calculate the drag 

coefficient. The first of these methods, which has been used in 

many researches, is the empirical correlation of Simonin et al. 
18

, obtained from the standard drag curve. 
 

Spherical bubbles assumption: 

(9) 
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The method is suitable for rigid surface bubbles that remain 

spherical in shape and their surface-tension effects are 

negligible, such as small bubbles (db<1mm) moving in 

contaminated fluid, or fluid containing surfactants
19,20

. 
 

An alternative method, that assumes a non-rigid surface and 

allows for the various shapes of bubbles, uses a range of 

equations dependent on the Reynolds number, Re, and the 

Weber number, We. These non-dimensional numbers are 

calculated from the equations: 
 

Non-spherical bubbles assumption: 
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Where 
gl UU −

 is the slip velocity vector between the two 

phases, 
γ

 is the bubble surface tension and bd
 being the 

equivalent spherical diameter of a non-spherical bubble defined 

as: 
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Where bV
 is the volume of a bubble. The equations associated 

with the model are: 
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The above equation is the "dirty water" model of Wallis et al.. 

The drag coefficient for this method is calculated using
21

: 
 

(13) ,)1( 7.1
0

−−= gdd CC α
 

Where gα
 is the volume fraction of bubble swarm. The 

multiplier of 0dC
 in the above equation, termed the swarming 

coefficient, accounts for the reduction in drag due to bubble-

bubble interactions. Under the assumption that the bubbles 

retain their spherical shape at all times then, eq. 9 may be used 

to calculate the drag coefficient. But, for the case of non-

spherical bubbles the dirty water model (eq. 12) is used to 

calculate the drag coefficient. 

 

Boundary conditions: The conditions for the dependent 

variables need to be specified along the boundaries of the 

computational domain. Due to the constraints of axis-symmetry, 

along the centerline of vessel (r=0), the following conditions are 

applied: 
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For laminar bubble-driven flows, we can use the no-slip 

condition for the boundary conditions along the solid walls. In 

addition, the gradients of volume fractions of the gas and the 

liquid along the walls vanish because no mass flux can pass 

through the walls. These conditions are given by: 
 

 (17) ,0,0 ==== lglg wwvv
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Where new points to the direction normal to the solid wall. For 

simplicity, we neglect the formation of waves on the liquid 

surface by assuming that the liquid surface is flat. In addition, 
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no liquid flow is allowed to pass through the top boundary, 

while the gas leaves the surface at a rate given by the natural 

boundary condition: 
 

(19) 
,0;0 ===

∂

∂
ll

g
vw

z

w

 
For the laminar flow, the numerical results of Durst et al. shows 

that the case with zero liquid velocity both along and normal to 

the surface [as given in equation (19)] agrees better with the 

experimental results. They attributed this fact considering that 

bubbles could cause an air-liquid interface to act as a partially 

rigid surface
3
.  

The boundary conditions on the gas injection orifice and the gas 

injection rate are given by the available experimental data of 

Durst et al.
2
. 

 

Numerical method: The governing equations for the two-fluid 

model are solved using the appropriate algebraic equations 

derived by integrating over the meshed control volume. For this 

purpose, the computational domain is overlaid with an 

orthogonal uniform grid with the nodal points of velocity 

variables for each phase being staggered with respect to those of 

pressure and void fraction, located at the regular grid nodes. The 

governing equations are integrated over a control volume by 

which flow domain is divided and the following algebraic 

equation is obtained: 
 

(20) ,baaaaa SSNNWWEEPP ++++= φφφφφ
 

 
In which a’s represent convection-diffusion coefficient and 

subscripts W, E, S, N represent west, east, south and north of 

node P and also b represents the volumetric fluid interaction 

coefficient. In addition, the power-law scheme is employed to 

approximate the convection-diffusion terms. The whole set of 

equations is solved by incorporating the SIMPLE algorithm. 

Because of the nonlinearity of the governing equations and the 

coupling of variables, iterative numerical procedures are 

conducted until the convergence is reached. Furthermore, grid 

sensitivity is examined to ensure sufficient spatial resolution. 

The results reported are based on the mesh of 30×15 uniform 

grids. 

 

Results and Discussion 

Predicted results include the void fraction and velocity fields, 

computed for both the spherical and non-spherical bubbles, 

which are compared with experimental data measured by Durst 

et al.
2
. 

 

The simulated axial gas velocity along the centerline of vessel 

(normalized by the maximum bubble axial velocity max,gw
), 

which is compared with the experimental data of Durst et al. 
2
, 

is shown in Fig. 2. Near the gas entrance, the bubbles are driven 

by the buoyancy force and move upwards. After a certain 

distance from the leading point, bubbles reach a terminal 

velocity and move up at this speed until they reach the vicinity 

of the free surface where the bubble velocities are reduced due 

to the increase of drag force caused by increasing relative 

motion between bubble and liquid phases. It should be noted 

that the liquid flow is a result of friction between two phases. 

Therefore, when the liquid approaches the free surface, the axial 

velocity decreases while the radial velocity increases. As a 

result, the liquid shifts in the radial direction and may cause the 

liquid circulation in the container. It is seen that the gas velocity 

computed by the non-spherical assumption is closer to that of 

the experimental data. 

 

 
Figure-2 

Gas phase axial velocity along the centerline of vessel. 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

z/H

W
g
/W

g
,m

a
x

Experimental datas of Durst et al [2]

Results for non-spherical bubbles

Results for spherical bubbles



Research Journal of Recent Sciences _____________________________________________________________ ISSN 2277-2502 

Vol. 4(1), 9-16, January (2015)                   Res.J.Recent Sci. 

 International Science Congress Association            14 

 
Figure-3 

Predicted vertical component of liquid velocity at the vertical section of z/H=0.36 
 

Figure-3 shows the comparison between the simulated profiles 

of axial liquid velocity at the vertical section of) z/H=0.36) and 

the experimental data of Durst et al. 
2
. Here, the maximum 

bubble velocity max,gw
, is used to normalize the liquid velocity. 

It is seen that the liquid velocity computed by the non-spherical 

assumption is closer to that of the experimental data's. The 

figure shows that the maximum liquid velocity is located on the 

centerline of the plume where the maximum gas volume 

fraction is formed. The significant decrease of axial liquid 

velocity along the lateral direction may be attributed to the 

decrease of bubble void fraction due to the weakness of bubble 

diffusion
24,25

. 
 

The predicted gas void fraction profiles at two vertical sections 

in the cylinder, compared with the experimental data of Durst et 

al. 
2
 are presented in figures. 4, 5. It is seen that the maximum 

gas volume fraction is located in the centre of the cylindrical 

container. Most of the bubbles are located in the central region 

of the container, and bubble volume fraction near the gas 

injection orifice is higher than that far away from the orifice. 

The significant decrease of gas void fraction along the lateral 

direction of cylinder may be attributed to the decrease of bubble 

diffusion. It is seen that the gas void fraction computed by the 

non-spherical assumption is closer to that of the experimental 

data. It should be noted that the gas volume fractions for 

2.0>
R

r

 are two orders of magnitude lower than the central 

regime and hence their value cannot be observed on a linear 

scale shown in these figures. 

 

 
Figure-4 

Predicted gas void fraction distribution at the vertical section of z/H=0.06. 
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Figure-5 

Predicted gas void fraction distribution at the vertical section of z/H=0.36 

 

Conclusion 

Numerical simulation of bubbly flow caused by the axial gas 

injection into a vertical cylinder is studied in this paper. It is 

found that the radial components of bubble velocities are much 

smaller than the corresponding axial ones, and the bubbles move 

up almost vertically. The maximum liquid velocity is located on 

the centerline of the plume where the maximum gas volume 

fraction is formed. The maximum gas void fraction is located in 

the centerline of the container. Most of the bubbles are located 

in the central region of the container, and gas volume fraction 

near the gas injection orifice is higher than that far away from 

the orifice. The major aim of this study was to investigate the 

sensitivity of the numerical results to the sphericity assumption 

for the bubbles. It is found that the numerical results computed 

by the "dirty water" model are closer to those of the 

experimental data. Therefore, taking into account the fact that 

the gas-liquid; inter-phase surface is mobile, the "dirty-water" 

drag model can be more suitable than the standard drag curve 

originally obtained for fixed inter-phase surfaces of liquid-solid 

or gas-solid systems. 
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Nomenclature 

drag coefficient 
dC  

molecular diffusivity coefficient, m
2
/s D  

equivalent spherical diameter, m 
bd  

volumetric inter-fluid friction, kg/m
2
s

2 

rF  

Reynolds number Re  

Weber number We  

r-velocity vector, m/s v  

z-velocity vector, m/s w  

buoyancy forces, kg/m
2
s

2
 

bF  

gravity vector, m/s
2
 g  

volume, m
3 

V  

liquid depth, m H  
radius of cylinder, m R  

Greek letters  
α   
ρ   
µ   
γ   

Subscript  

b   
g   

l   

nb   

eff   

P   

void fraction  

density, kg/m
3 

 

viscosity, N.s/m
2 

 

bubble surface tension, N/m  

  

bubble  

gas phase  

liquid phase  

neighbor  

effective  

unknown node  

 

 


