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Abstract  

The Shifted exponential distribution is appropriate for modeling the distribution of the time to failure of systems under 

constant failure rate condition. In this regard, the parameter is related to the mean life plus shifted parameter. In this 

research paper we present shifted exponential as likelihood function and conjugate inverted gamma prior for making 

Bayesian inference comparatively robust against a prior density poorly specified. Making use of a mixture of conjugate 

Square root inverted gamma priors assists us to make robust inference against misspecified prior. In case of having a very 

different likelihood than what will be expected for the given prior density, a large posterior probability of misspecification is 

obtained, and our posterior distribution will lean heavily on the likelihood. 

 

Keywords: Shifted exponential distribution, joint posterior, mixture posterior, mixture of two components inverted gamma 

prior. 
 

Introduction 

Shifted exponential distribution finds its application in failure 

data analysis and reliability analysis. The value of sifted 

parameter is some time taken as minimum life or guarantee 

time. When shifted parameter equals to zero, it simply becomes 

the exponential distribution. It was the first lifetime distribution 

for which researchers developed statistical methods. The 

exponential distribution is evaluated as a survival time model, 

particularly, used in industrial life testing
1,5

. Many researchers 

have added to the statistical methodology of the exponential 

model. Rich literature is available in this area
6,8

.   

 

In the current research paper, we consider the Shifted 

exponential distribution as sample information to update 

posterior distribution of the parameter (time-to-failure of the 

system) using the Inverted Gamma (IG) prior. Effect of 

misspecified prior is shown with the help of numerical example. 

Researchers have considered robust Bayesian inference by using 

the two components of mixture priors
9
. A mixture prior is also 

assumed that combine with likelihood to give mixture posterior 

distribution. The derivations of the mixture prior, the joint 

posterior and the mixture posterior is presented in order to 

eliminate the effect of misspecified prior and draw graphs to 

show that with the use of mixture prior, mixture posterior gives 

us better result in case of misspecified prior. A neighborhood 

class of mixture priors has been considered by researchers
10

. 

Some researchers have considered Bayesian analysis of the 

Rayleigh life time model incorporating Square root inverted 

gamma prior and mixture of two component Square root 

inverted gamma prior
11

. 

 

 

Methodology  

Let 
1 2, , ...,

n
x x x be a random sample drawn from Shift 

edexponential distribution with shift parameter 1c =  and scale 

parameter, that is 0.09.λ =  The pdf and graph of the 

distribution are given below: 
( )

1
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In pdf, λ is called a “survival parameter” as the random 

variable X is the amount of time that a given biological or 

mechanical system, R, manages to survive. Therandom 

variable (X c) ~  Exponential( )λ− yields [ ]E X λ= . The joint 

pdf is called the likelihood function, which is a function of λ . 

Symbolically, 

L( x , λ )=
1( )f x λ 2( )f x λ  . . . ( )

n
f x λ  

 

Where x = ( 1 2, ,...,
n

X X X ) 
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The likelihood function is used to find the set of parameter 

values that gives the highest possible likelihood, but in Bayesian 

statistics, the purpose is to obtain a complete probability 

distribution over all possible parameter values, the likelihood 

function of the shifted exponential distribution is given 

as

( )
1

L( , )

x c

n
e λλ

λ

Σ −
−

=x  

 

Bayesian Analysis of Shifted-Exponential Model Using IG 
Prior: Bayesian approach has several advantages over the more 

commonly used classical approach that it makes use of not only 

the sample information but also the prior information. Now here 

we take prior distribution for unknown parameter λ as Inverted 

Gamma and mixture of two component of Inverted Gamma 

distribution which reflects our beliefs about the population 

being studied. The inverted gamma is a two parameter 

probability distributions. The inverted gamma distribution’s pdf 

is defined over the range 0λ > , with shape parameter a  and 

scale parameter .b  

( 1)( ) ,  0 (2)
( )

ba
ab

P e
a

λλ λ λ
−

− += >
Γ

 

The posterior information is proportional to the product of the 

prior information and the sample information.    

(( ) 1)( )
( | ) ,  0 (3)

( )

b x nca n
a nb x nc

P e
a n

λλ λ λ
+Σ −+ −

− + ++ Σ −
= >

Γ +
x  

 

The above posterior is Inverted Gamma distribution. In the 

above density, the constants a andb are called the hyper-

parameters. 

 

Specification of Prior: Due to uncertainty about the true value 

of the parameter, it is considered as random variate. Hence the 

probability rules are used in order to draw inferences about the 

underlying parameters. The prior information is the probability 

statement about parameter which is interpreted as degree of 

belief or the relative weights that expert gives to every possible 

value of the parameter. These are the information the expert has 

before the data is observed. The prior should have relatively 

high probabilities over the whole range where the likelihood is 

considerably important. 

 

But sometimes we have relatively high prior probabilities over 

the range that does not support the likelihood. In case of 

incorrect prior it affects posterior distribution
12

.  

 

Bayes’ Theorem with Mixture Priors: Based on personal 

knowledge the researcher specifies the prior density for the 

unknown parameters of a statistical distribution. Let our prior 

distribution be 0 ( )P λ . Now it is quite precise that if our prior 

density is incorrectly specified, we would not have very good 

idea of what values λ  should take. In that case we use uniform 

prior for λ that is 1( )P λ . Let 0 ( | )P λ x  be the posterior 

density of λ  given the observations when we start with 0 ( )P λ  

as the prior. Likewise, let 1( | )P λ x  be the posterior 

distribution of λ  given the observations when we start with 

1( )P λ  as the prior: 

( | ) ( )L( , ) 0,1
i i

P P where iλ λ λ∝ =x x  

 

By applying the updating rules we find them using conjugate 

prior family or flat prior.  

 

The Mixture Prior: Let us define a new parameter, I ,taking 

two possible values. If 0,i =  then λ  comes from the density 

0 ( )P λ . On the other hand, if 1i = , then λ  comes 

from 1( )P λ . The conditional prior density of λ  given Iis given 

by 

0

1

( ) 0
( )

1( )
i

P if i
P

if iP

λ
λ

λ

=
= 

=
                                          (4) 

Suppose the prior probability of I be 0( 0)P I p= = , where 

0p  is chosen some high value like .9,.95or .99, as we think of 

our prior 0 ( )P λ to be correct. Let 1 0( 0)p I p= = be the prior 

probability that our prior density is misspecified. The joint prior 

density of λ  and I  is obtained as 

( , ) ( )
i i

P i p Pλ λ= ×  for 0,1i = .                        (5) 

 

It is worthwhile to be noted that the above joint density is 

continuous in the parameter λ  and is discrete in the 

parameter I . One can easily obtain the marginal prior density of 

λ by marginalizing the joint densityover the values of I. It has 

mixture prior distribution as its distribution 
1

0

( ) ( )i iP p Pλ λ=∑                       (6) 

 

is a mixture of the two prior densities. 

 

The Joint Posterior: The joint posterior distribution of , Iλ  

given the observation x  is given by 

( , | ) ( , ) ( | , ) P i a P i f iλ λ λ= × ×x x for 0,1i =
           

(7) 

 

Where a is the constant of proportionality. Since the sample data 

depends onlyon λ , not onI, therefore, the joint posterior reduces 

to 

( , | ) ( ) ( | )
i i

P i a p P fλ λ λ= ×x x  for 0,1i =  

( , )
i i

a p h f λ= × x  for 0,1i =             (8) 
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where ( , ) ( ) ( | )
i i

h P fλ λ λ=x x  is the joint distribution of the 

parameter and the data, when ( )
i

P λ  is the correct prior. To 

obtain the marginal posterior probability ( | )P I i= x we 

integrate λ  out of the joint posterior: 

( | )P I i= x ( , | )P i dλ λ= ∫ x  

( , )
i i

a p h dλ λ= × ∫ x
 

( )
i i

a p f= × x
 

 

for 0,1i = , where ( )
i

f x is the marginal probability (or 

probability density) of the data. The posterior probabilities sum 

to 1 and the constant “a” is the normalizing constant, so 

1

0

( )
( | )

( )

i i

i i
i

p f
P I i

p f
=

= =
Σ

x
x

x

                    (9) 

These can be easily evaluated. 

 

The Mixture Posterior: We find the marginal posterior of λ as  

1

0
( | ) ( , | ).

i
P P iλ λ

=
= Σx x                                      (10) 

Yet there is alternate way of arranging the joint posterior from 

conditional probabilities, that is, 

 

( , | ) ( | , ) ( | ).P i P i P I iλ λ= × =x x x
                              (11) 

where ( | , ) ( | )
i

P i Pλ λ=x x  is the posterior distribution 

when we started with ( )
i

P λ  as the prior. Thus the marginal 

posterior of λ is  

1

0
( | ) ( | ) ( | ).

i
i

P P P I iλ λ
=

= Σ × =x x x                          (12) 

 

The expression in (12) is the mixture of the two posterior, where 

the weights are the posterior probabilities of the two values ofi 

given the data. 

 

Results and Discussion 

Let we draw a random sample of size n=10, so our prior 

Inverted Gamma distribution is  
1
( , )G a b

−
. Here we take a = 8 

and   b = 2. From equation (3) our posterior distribution is 
1
(18,12.30)G

−
. 

 

From figure 1 we see that the conjugate inverted gamma prior 

and the likelihood are very far from each other and the posterior 

is in between. It gives high posterior probability to values that 

are not supported by the data (likelihood) which is shifted 

exponential distribution and are not strongly supported by prior 

either. This is not satisfactory. This shows how an incorrect 

prior can arise.  

 

Now we reanalyze the data with a mixture prior. We let 0 ( )P λ  

be the same
1
(8,2)G

−
 prior that we used. We let 1( )P λ  be the 

uniform prior. We let the prior probability 0 0.95p = . 
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Figure-1 

Likelihood, Prior and Posterior 
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Figure-2 

Mixture Prior and its Component 

 

Mixture Prior is quite similar to single prior in figure 2. 

However, mixture prior has heavier weight in the tails. This 

gives makes our prior robust against prior specification. In this 

case, ( , )
i

h xλ  is: 

8
(18 1) 12.30

0

(2)
( , ) [ ]

(8)
h Exp λλ λ − += −

Γ
x

 
(9 1) 10.30

1( , ) [ ]h Exp λλ λ− += −x
 

 

Now integrating them with respect to λ  gives 

0

0

( , )h dλ λ
∞

∫ x

 
8

(18 1) 12.30

0

(2)
[ ]

(8)
Exp dλλ λ

∞
− += −

Γ ∫
 

8

18

(2) (18)

(8) (12.30)

Γ
=

Γ
 

 

We can evaluate the integral numerically 

0 0

0

( ) ( , )f h dλ λ
∞

= ∫x x

 
74.35097 10−= ×  and 

1

0

( , )h dλ λ
∞

∫ x

 

(9 1) 10.30

0

[ ]Exp dλλ λ
∞

− += −∫
 

9

(9)

(10.30)

Γ
=

 
 

To evaluate the integral numerically 

1 1 1

0

( ) ( , , , )
n

f h y y dλ λ
∞

= ∫x K

 
0.0000309019= . 

 

So the posterior probabilities using the equation (9) are 

( 0 | ) 0.211057P I = =x  and
( 1 | ) 0.788943P I = =x

. 

 

From equation (12) posterior distribution is given by              

0 1
( | ) 0 .2 1 1 0 5 7 ( | ) 0 .7 8 8 9 4 3 ( | ) ,

 

P P Pλ λ λ= × + ×x x x  

Where 0
( | )P λ x  and 1

( | )P λ x  are the conjugate posterior 

densities obtained by using 0
P  and 1

P  as the respective priors. 
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Figure-3 

Mixture Posterior and its Two Components 
 

Posterior distribution which is based on our prior experience 

denoted by P_O in figure 3 is very peaked if we compare with it 

by posterior distribution which is based on flat prior and mixture 

distribution. Mixture posterior distribution and posterior 

distribution based on uniform prior is quite similar. 
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Figure-4 

Mixture Prior, Likelihood and Mixture Posterior 
 

When the prior and likelihood are very far from each other, we 

need to follow the likelihood function as it is determined from 

the observed data.  Mixture prior and single prior look very 

similar to each other. However it has a heavier tail allowed by 

the mixture, and this has allowed its posterior to be very close to 

the likelihood as shown in figure 4. We see that this is much 

more satisfactory than the analysis that shown in figure 1.  
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Conclusion 

In this study we presented a Bayesian analysis against a 

misspecified prior. By assuming the mixture of conjugate 

inverted gamma prior enabled us to do the robust analysis.  We 

see that the in case of misspecified prior the posterior will be in 

between prior and likelihood, and will give high posterior 

probability to values neither supported by the likelihood or the 

prior. We give a small prior probability by using indicator 

random variable indicating that our original prior is 

misspecified.  

 

The mixture posterior is very close to the original posterior 

when the original prior is correct. In case when the original prior 

is very far from the likelihood function, the posterior 

probability ( 0 | )P I = x  is to be very small, and the mixture 

posterior will be close to the likelihood. This has set the conflict 

between the original prior and the likelihood by giving much 

more weight to the likelihood. 
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