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Abstract

In this work, a steady two dimensional analytical solution is presented for non-isothermal, non-Newtonian fluid flowing
through the channel having symmetric stenosis of cosine shape. The governing Navier-Stokes equations are reduced to
compatibility and energy equations which are solved analytically with the help of regular perturbation method. The results
obtained from the present analysis are presented analytically and graphically in terms of wall shear stress, separation and
reattachment points, pressure gradient and temperature distribution on blood flow through a stenoised channel. It has been
observed that the non-Newtonian nature of blood reduces the magnitude of the peak of flow over the stenoised region.
Further, increase in second grade parameter (&)increases the temperature, pressure gradient, velocity distribution and wall
shear stress while on the other hand the critical Re decreases. Its worth noting that the results presented in this article are

compared with available results in literature and find good agreement.
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Introduction

It is well known that the deposit of cholesterol and proliferation
of connective tissue may be responsible for the abnormal
growth in lumen of artery. Its actual cause may not be known
exactly but its effect on the cardiovascular system can easily be
understood by studying the blood flow in its vicinity. One of the
practical applications of blood flow through a membrane
oxygenator is the flow with an irregular wall surface. Many
authors have studied the behavior of blood in a constricted
artery by considering different models of stenosis and assuming
the blood to be Newtonian and non-Newtonian fluid. One of the
earliest studies in this regard was conducted by Young'. He
considered blood as a Newtonian fluid and suggested that the
boundary irregularities can be an important factor in the
development and progression of arterial diseases. Forrester and
Young presented the analytical solution of Newtonian fluid for
an axisymmetric, steady, incompressible flow and considered
mild constriction for the flow of blood, both theoretically and
experimentally in the converging and diverging tube’. Lee and
Fung solved the flow model of the Newtonian fluid numerically
through locally constricted tube for the low Reynolds number”.
The constraints in their numerical procedure restricted the shape
of the tube to be fixed and the Reynolds number to be moderate.
Morgan and Young carried out the extension of Young"?. They
used an integral method and presented the approximate
analytical solution of axisymmetric, steady state flow, which is
applicable to both a mild and severe constriction. Haldar
investigated the flow of blood through an axisymmetric cosine
shape constricted artery and showed the solutions for velocity
distribution, wall shearing stress and separation phenomena’. He
indicated the presence of separation point, due to the occurrence
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of negative wall shear stresses at high Reynolds numbers. Chow
et al. analyzed the steady laminar flow of incompressible
Newtonian fluid for different physical parameters by
considering the sinusoidal boundary®. It is observed that by
increasing either Re or &, the separation point would move
down towards the throat in the divergent part of the channel
with subsequent enlargement of the region of separation.

In addition to the Newtonian model many authors have studied
the behavior of blood as non-Newtonian fluid. The non-
Newtonian fluid may be considered as comparatively better
model to represent the blood, due to its cells suspension
property, even at a low shear rate. Further the Newtonian model
is reasonable with regards the large channel assumption.
However, for smaller channels the flow is expected to take on
non-Newtonian character. Shukla et al. presented the analysis of
blood by considering it as non-Newtonian fluid and studied the
effect of constriction on the resistance to flow along with wall
shear stress in an artery’. Mishra and Shit® considered the
Herschel — Bulkley equation to represent the non-Newtonian
characteristics of blood®. Haldar discussed the effect of shape of
constriction on resistance of blood flow through an artery with
mild local narrowing’. Cheng and Michel modeled the flow of
blood as steady and pulsatile physiological flow'’. Vahdati et al.
designed a non linear ordinary differential equation for non-fatal
disease in population and solved by Homotopy analysis
method''. Thundil and Ramsai assumed the fluid to be air and
presented numerical investigation using CFD'?. Chauhan et al.
studied the effect of turbulent flow over Ahmed’s body by
applying numerical technique'’.
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It should be noted that all the above investigations are limited to
flow patterns, pressure gradient, separation and reattachment
points. However, the present work also investigates the effect of
heat transfer in the channel. The solutions are presented
graphically in terms of stream lines, wall shear stress, points of
separation and reattachment, temperature distribution and
pressure gradient. We assume the time independent flow of
blood between two parallel plates, situated at the separation 2h,,.
To solve the highly non-linear equations, we apply the
perturbation technique to find the analytical solution by taking &
as a small parameter.

Problem Formulation

It is assumed that the blood behaves like a homogeneous,
incompressible, Non-Newtonian fluid of second grade with heat
transfer. The governing equations for the present analysis are
conservation of mass, momentum and energy equation.
Consider the steady flow of blood through the channel of
infinite length having stenosis of length [/2. The coordinate
system is chosen in such a way that the channel lies in xy-plane
and x-axis coincide with the center line in the direction of flow
and y-axis perpendicular to x-axis.

Consider the boundary of the stenoised region of the form
Haldar’ as

1(®) =, -2 14 cod X | AT
2 L 4 4

=h ,

0

ey

otherwise,

where /1(X) is the variable width of channel, 2h, the width of
unobstructed channel and A the maximum height of stenosis.
Assume that the blood behaves like non-Newtonian fluid and

for steady, homogeneous, incompressible two dimensional flow
of blood velocity field is taken as

V=( a5, 535 0) @
Introducing the dimensionless quantities of the form
~ ~ 2 _
O S AP SO AN A S s PR
[ h, u u ,uual() T,-T,
where u, is the characteristic velocity. and T,,T, are

temperatures on the boundary of stenosis and fluid respectively.
Dimensionless form of the boundary profile becomes

£ 1 1
=l-—U+cosd4rx) ——<x < —,
f 2 ( ) 4 4 4)
=1, otherwise,
where  f=h(X)/h, and &€=A/h,is dimensionless height

of stenosis. Introducing the stream functions of the form
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u:—w,v:— a4 (5)
dy ox

which satisfy the continuity equation identically and

momentum equations reduces to component form by making
use of (2), (3) and (5) along with the energy equation in
dimensionless variables as follows

9 _ResWyrw—v2[ 2|52 v, ©)
ox ox ay ox
dq oy ) (a‘l‘j ¥

—Red =L V¥ =5V ad —V*'¥ 7
dy dy ox dy

Iy 9) as[ oy 9 _oy o
Peﬁa(y’ )—VH B(1+ 5[ ]]

2, \? 2 2
482 2V a—y; -5 a—y;
0xdy dy ox

where q is modified pressure in terms of stream function given
by

q= p+2R65[[aa§/] +5(aafj] 5{%/V2[%]+52%V2[%)} )

%y 1(°y W ’
3a+28) 46> -0’ .
~da+ ﬂ){ [8xayj +2[8y2 o’

Eliminating modified pressure from (6) and (7), we get
compatibility equation in terms of stream function of the form'*

®)

Vv? V!
R€5M=V4W+CX58(W’—W) (10)
a(y, x) a(y, x)
Boundary conditions in terms of stream functions are
(—;_l//:o’ l//:_l’ =1 at y:f’ and
" (11)
J V_0,y=0, 2%-0 a y=0
dy dy
2 2
where 62 =0’ a—2+a—2
ox° dy
— aluu , ,B: aZM() , — h{) , Re — Muh() ,
ﬂhll ltlhll l() V
d
" uzﬂ puuhoc
Br=——-+2 , = £
k(T,-T,) k

It should be noted that fora@ = 0, the above model reduces to
viscous case and reduced compatibility equation (10) for
& = 0 has been discussed by'®
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Solution

The resulting compatibility and energy equations are non-linear
and exact solution is very difficult to find, for the analytical
solution we apply perturbation technique in these equations by
considering O as a small parameter, which is requirement of
concerned method, as follows

W=y, (x,3)+0W,(x, )+ W, (x,y)+

¢9=6’0+§6’1+52¢92+-~ (12)
Zeroth order problem and its solution: Zeroth order system is
obtained by substituting (12) in (8), (10) and (11), then equating

the coefficients of & 0 , We obtain

o',
4 — 0’
dy*

R} ’
o — _B o
dy” r( dy’ j

Subject to the boundary conditions

_a‘//0=07 y/()=_%7 9{):1 at y=f’ and

dy (15)
2’y 26
=0, =0, =0 at
dy’ v 9y
The solution of (13) is obtained by integrating successively
along with the boundary conditions on stream function in (15)
as follows

_N(.2_ =Y
W0—4(77 3), =7

which is similar to zeroth order viscous solution and free from
second grade parameter. The solution of (14) by making use of
(16) and subject to boundary conditions on temperature in (15)
becomes

-1 3Br(4_1)

(13)

(14)

y=0.

16)

a7

’ 16

It is observed that zeroth order solution of energy equation is
independent of second grade parameter and depends upon ratio
of heat production by viscous dissipation to heat transport by
conduction.

First order problem and its solution: The first order system is
obtained by comparing the coefficients of J , we obtain

Iy, o'y,
A a(‘”"’ % j a(‘”"’ %' j
Vi _ Re > J_ a Y (18)

oy (y.x) y.x)
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2
aezl_P [ay/ni_ay/aijeo 2
dy dy ox dx dy . (19)
a2V, a3y, 3 3y, 3 \(dw, Y
dy> 9y* 4\ 9y 9x 9x 9y )| 9y’
along with the boundary conditions
_81//1:0’ v, =0, =0 at y=f, and
dy (20)
2
IVi_o, y=0. 2920w y=o.
dy dy

The solution of equation (18) is obtained by integrating and
making use of (16) subject to corresponding boundary
conditions of the form

__3Rejm (776 -7n* +11n° —5),

= 21
! 1120 @D

which is first order viscous solution and independent of second
grade parameter. The solution of (19) is achieved by using
expressions for ¥/, .6 , ¥,
the boundary conditions on temperature giving

_3B(17 1) £'[ > QReO1f 4717 +197 +19)+
80" | Pe(lSrf —137f 837 +337)+168a(2f 37 -3)

and integrating twice along with

(22)

It is observed that by setting @ = 0, the first order solution

reduces to first order viscous solution for energy equation. The
solution of first order temperature distribution depends upon
ratio of convection to conduction.

Second order problem and its solution: The second order
system of equations is obtained by equating the coefficients of

07 as follows

2 2
v 2] o]
'//42 =Re Y Y -
dy 9(y.x) 9(y.x) , (23)
o'y, o'y
— 1 a , 0
(‘//a’ ay4 j (l/ll ov? 841//
+ _ 0
d(y,x) d(y,x) dx’dy’
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The solution of equation (23) is obtained by making use of
¥,, ¥, and integrating successively four times along with

corresponding boundary conditions in (25) giving

-1y o
2_3449600]“2[ 385(4"=47)

( Rea(5n*-267>+69)+672f> )
+fRe*( f7( 987°—-959n* + 247217 - 2875 )
—ff"( 357°=3157* +853n° —1213 ) ) ]..

(26)

It is observed that by setting @ = 0, equation (26) reduces to
second order viscous solution. To find the second order
6, in
(24) and integrating twice along with the corresponding
boundary conditions on temperature, we obtain

temperature using the expression for ¥, , ¥,,¥,,0

(2

[ —2f2{ 924aRe( 367° -2797° —771n* +3797°> +379 )— f>{ 4PeRe( 8407" — 6860n°

+114557° +31397* —26891n* + 56269 )+2{ —517440( 137* +97° =36 )+Re’( 23037 - 217217"

+631227° — 680867 +17183n2 +17183 ) } }+ f''{ 29568aRe( —18n* +7n> +7 )+ f*{ 2PeRe( 5257"°

27

—5173n% +14132n° = 7120n* —290657* +102605 )+8{ —258720( 7n* —4n* -9 )+Re*( 1757 —1673n*
+5158n° —7778n* +20597% +2059 ) } } }+6468Pecr( 8n7° —37n° +23n* +113n* —427 )+7Pe* f*( 225"

—7217% - 22067° +30134n* —94771n° + 238859 ) ].

The second order viscous solution for the energy equation can be recovered by setting & = 0 in equation (27). The second order

temperature depends upon ratio of conduction to convection and dissipation to conduction. Now velocity components u, v and the

temperature @ can be recovered from the above solutions.

Pressure Distribution: In this section, our aim is to find the pressure for which we have to perturb modified pressure as

q=qu+5ql+§2q2+---.

(28)

Using expression (28) in (6) - (7) and equating the coefficients of like powers of & we obtain the various systems. To find the

solution of these systems, we apply

q= ong—zdx + Lyg—zdy.

(29)

Further to find the pressure within the channel, substitute the perturbed pressure as

P=p,+0p +8°p,+-n.

in equation (9), we get the following perturbed system for pressure.

(30)

Zeroth order pressure: Equating the coefficients of 0" on both sides of (6)-(7) for modified pressure as follows
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Lo 2 (1)
ox oy
d
Yo _ . (32)
dy
and equation (9) gives the zeroth order pressure as
P, =4, (33)
Solution of equations (31)-(32) by using (29) obtained of the form
3 1 2 L tan 27 x)
q, =— 3e? +8(1 — £))tanh [
27x(e-1) L/s—l( ) Ve -1 (34)
v L fi6(e -1)-3> - 3e(e - 2)cos (47 x)}]
8z f

which is viscous pressure and independent of second grade parameter (& ) .

First order system and solution: Comparing the coefficients of & on both sides of (6)-(7), the resulting equations are obtained as

d 0’ 0’ 0 0
% _ _y? + Re{ VZ —a VZ Vo (35)
ox  dy dy dy ox
d 0’ 0 0
% _ Re 1/2" - l/:" v, R (36)
dy dy dy* | 9y
and first order pressure becomes
oy, dy,d’ 2y,
plqu—lRe Vo | 1 W"—WS”+1(30:+2/3 yg . (37)
2 dy dy dy 2 dy
The solution of first order modified pressure is obtained by using ¥/, ¥, in (35)-(36) along with (29) as
1 |9Re 1
=—— 35p* =70n° +11)-————35p" f* = 700> f* (e =1)* +11(e = 1)* )} 38
4 mo{fz(n 7 )(5—1)6(7” 0 £2(e-1) +11(e-1)') G8)
The first order pressure is given by (37) as follows
Re 4 44 2 02 2 4
— 35 - 70 e-1) +11(e -1
r oy e =T e 1) e - 1)) )
Pre"Tio | sspe 24Re |

+

6 2

(Re 7> +8Qa + ﬂ))—;—g(Re n?+ 2(1)—

It is observed that second grade parameters do not appear in the first order modified pressure but it is present in first order pressure.

Second order system and solution: Equating the coefficients of like power of & * on both sides of (6)-(7), the system is obtained

as
9q, 83W2 Iy, y, azl//1 Iy, 'y, Iy, 84l//1 Iy, 'y,
= +—=+R 0 + - |- - + = ) 40
ox 9y’ ox’dy © ox dy’ ox 0y’ ox dy* ox oy @0
2 2 3 4 4
a%:Re aWoa l/;l_}_al//la Wzo _ a;//o —a aWoal/:l_l_ana W40 , (41)
dy dy dy dy dy dy“ox dy dy dy dy
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and equation for second order pressure is

3 3 2
ReOVe Vi of WOV, VIOV, | (5 +2ﬂ)8 V.oV,
dy 9y dy oy’ dy 9y’ day’ dy’

The solution of second order modified pressure is obtained in the integral form by using (40) and (41) in (29) as follows

e *sin(4mx)(Re 2 (77° — 420* + 6277 - 38)) }

Py =4, (42)

1 9
=—{ ZRean’aesin(4m)n* =30 +3
q, f4{ n (4m)n* -3n°> +3)- 13860

" 3449600 ri[ 27 £2{ +Re?(71148 7" - 467775 n* + 879648 ° — 658350 * +147996 > — 2875 )

— 1034880 (7577 —36n% +1) }-27720 Re (1657° — 6307° +9807* —4107> +23) }+ £ { 121 (
—1034880 (57> —1)+ Re (40425 7® — 194040 7 + 235620 * — 87780 7> + 4111 ) )+ 6930 Re aff "'( 8257°
~35287° —63707* —328077° + 253 )— 18480 Re a(5257° —12607* +94577> —82)+ £ £''{ 1034880
(1507* —997> +5)+ Re>( —101640 7'° + 717255 * — 1545852 77° + 142650 * — 429012 > + 14375 ) } (43)
+2£2f f{ = 2310 Re a(1057° = 5047° +1050 7* — 6567> + 69 )+ £2{ —1034880 (107* — 97> +1)
+Re?( 4928 7" —381157° +951727° —108570 n* + 44340 7> - 2875 ) } }+ f{ —6f"{ —1540 Re &
(1057° = 3157* +3157> —41)+3°{ —172480 (57> —1)+ Re*( 26957° —16170 7° + 26180 n* — 14630 1
+1093 ) } }+ 247 { —1155 Re ar(1357° — 67277° +14707* — 984> +115 )+ f>{ — 517440 { 157"
—157% +2 )+ Re?( 30037 — 24255 7° + 63294 7° — 76230 p* + 34503 7> - 2875 ) } }- £2f “(n* -1)
{ —1155 Re ar(157° — 697" + 141> = 23)+ £2{ —258720 (57> —1)+ Re>( 3857°* —30807° + 7546 "
-8624n2+1213 ) } } } } lax,

and (42) gives the second order pressure as

P, = 448(9”2{ 27 e sin(4m)(Re 2 (77 — 427 + 687> —38)-1120 )-Re” £'(p> 1) ( 7n* - 287>

+5) }+1192(l;ef4 {702 aesin(4m)( n* =30 +3 )+ f{ a( —=1197° +385n* =237n* +19 )-2n*B

( 2177“—70772+33 ) }}

* 3249600 7[ 2 *{ £7{ +Re? (71148 7" = 467775 1* + 879648 17° — 658350 7" + 147996 7° — 2875 )

— 1034880 (7577 —36m% +1) }- 27720 Re a(1657° — 6307° +9807* — 410> +23) }+ £ { 12.£*(

— 1034880 (577 — 1)+ Re > (40425 7® — 194040 77° + 235620 7* —87780 7> + 4111 ) )+ 6930 Re arff "'( 8257°
—352877° —63707* —32807> + 253 )— 18480 Re /(5257 —126077* +94577> —82 )+ £ f"'{ 1034880
(1507* =997 +5)+ Re>( —101640 7'° + 717255 ® — 1545852 1° + 142650 * — 429012 > +14375 ) }
+272F F{ —2310 Re a(1057° = 50477° +10507* — 6567 + 69 )+ £2{ —1034880 (107* =972 +1)
+Re?( 49287 —381157° +951727° —108570 n* + 443407 - 2875 ) } }+ f{ —6/""{ —1540 Re
(1057° —3157* +3157% —41)+3£2{ —172480 (57> — 1)+ Re>( 26957° —16170 7° + 26180 n* — 14630 >
+1093 ) }}+2/2{ —1155 Re ar(1357° — 6727° +14707* —984 7> +115 )+ £2{ — 517440 { 157"
—1577 +2 )+ Re>( 30037" — 24255 7° + 63294 7° — 76230 7* + 34503772 = 2875 ) } }- £ f (> -1)
{ 1155 Re (157 — 697* + 14172 =23 )+ £2{ —258720 (57> —1)+ Re>( 3857* —30807° + 7546 *

-8624n* +1213 ) } } }} ldx. @
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One can find the pressure p by substituting the expressions for p_ , p, and p, in equation (30). Viscous pressure could be

obtained by setting the second grade parameters & = ,3 =0.

Wall shear stress

Wall shear stress for the second grade fluid in dimensionless form is obtained from the component of Cauchy shear stress as

follows

d d

T,= 1+a(§ua+va—y] [gl; dv

v
+0— [+2aQ—.
8x]+ 0y

(45)

Wall shear stress up to second orderin O is obtained by making use of velocity components defined in equation (5) as follows

/(2R f* -1050)- R Rea(

:_[_

2 70f

The points of separation and reattachment are given by setting 7,, = 0, the resulting equation in terms of Re becomes

7
285 f2a0f £ 797

)[ 165(as(i6f>—f £ )-2£7f)

< [Lesle s +as(r f -162)

2 " Re’ 2_ " i 12~y pen
16— ")+ 80850(79f 40£7")+ 0(13f 2£") } 1.
(46)
(47)

—af2(40f £ =792 )28 2 f-1508 £+ 412 (5-1357 7)) }1

From the expression (47), we have to find the critical Reynolds number at which the separation and reattachment points occur.

Graphical Discussion

In this section solutions are presented graphically for wall shear
stress, zero wall shear stress, temperature distribution and
pressure gradient. Solutions are analyzed numerically through
graphs for second grade parameters (¢, ,B) , height of stenosis

(&), Reynolds number (Re), Brinkman number (Br) and Peclet
number (Pe). The geometry of the proposed model for the study
of the stenoised channel is depicted in figure 1. The radii of

obstructed and unobstructed regions are A(x) and A, .

The distribution of wall shear stress for the various values of Re is
given in figure 2 for fixed € =0.2,6 = 0.1, = 0.04 . An increase
in Re, wall shear stress increases near the throat of stenoised
region and becomes adverse in the converging and diverging
section of the channel. The negative shearing in converging and
diverging sections of channel indicates that there is point of
separation in the upstream region and reattachment point in the
downstream region of the channel. It is observed that wall shear
stress holds for both small and large Re. It is also observed that
the magnitude of adverse wall shear stress in the diverging part is
smaller than in the converging part. In figure 3 effect of second
grade parameter « =0,0.04,0.08 is shown on wall shear

stress, 7,,, other parameters are chosen to be € = 07,0 =1/7

and Re=38. It is observed that fora =0, the present result
corresponds to viscous fluid. As the second grade parameter
increases wall shear stress increases near the throat and becomes
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negative in converging and diverging sections due to separation
and reattachment points. It is noted that the effect of Re and
second grade parameter on wall shear stress have same adverse
behavior. In figure 4 effect of € on wall shear stress is presented.
The straight line indicates that there is no stenosis and the flow is
Poiseuille flow. By the increase in € wall shear stress increases
near the throat and becomes negative in the converging and
diverging sections of the channel, which is the prediction for the
points of separation and reattachment. The separation point was
considered to be the point nearest the throat where adverse flow
along the wall of channel is observed. The point farthest down
stream from the throat where back flow occurs is defined as
reattachment point. Figure 5 presents the distribution for the point
of separation in converging section of the channel for different €

along with fixed 0 and @ . The separation point lies to the right
of minimum point; actually the purpose for zero wall shear stress
is to find the critical Reynolds number where separation occurs. It
is observed that the critical Re decreases as the € increases. The
theory that the critical Reynolds number decreases with the
increase in height of stenosis is verified. Figure 6 predicts the
separation point for different & in the converging region for
fixed 0 and € . It is observed that with the increase in ¢ critical
Re decreases and this behavior has observed earlier. It is also
observed that the critical Re have same behavior for negative
values of & . In figure 7 zero wall shear stress is plotted for €
having fixed @ and O in diverging section of the channel. The
aim of investigation is to determine the critical value of Re at
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which reattachment occurred in the diverging region of channel.
As the critical Re reached the reattachment occurs in the
diverging region of channel and separation point occur in the
upstream region of channel. It is observed form figure 7 that as €

increases critical Re decreases. In figure 8 zero wall shear stress is
presented for various values of @ along with fixed £ and & . It
is observed that critical Re decreases as ¢ increases in the
diverging region of the channel. It is noted that the reattachment
point lies to the left of minimum point and shows similar behavior
as in figure 7. Now numerical results are carried out to study the
behavior of the temperature distribution graphically fora , &,
Br and Pe. In figure 9 behavior of Newtonian (& = 0) and non-
Newtonian (& # 0 ) effects are observed over the distribution of
temperature. Increase in ¢ temperature increases over the
stenoised region along with the fixed values of remaining
parameters and becomes negative in converging and diverging
regions. It is noted that the maximum value of temperature occurs
at the middle of the stenoised region. The adverse temperature in
these regions causes back flow as observed earlier in wall shear
stress. In figure 10 effect of Br is shown over the distribution of
temperature for fixed Pe and Re. It is observed that with the
increase in Br temperature increases over the stenosis and
decrease due to back flow in the converging and diverging section
of the channel. Figure 11 presents the effects of Peclet number,
Pe, on temperature by keeping other parameters fixed. It is
observed that with the increase in Pe temperature increases which
firmly ensures that the whole region is dominated by convection.
The magnitude of the adverse temperature in the diverging region
is smaller as compared to that in the converging region. The
adverse temperature in these sections causes back flow. Figure 12
depict the pressure distribution for various values of £ in the
converging as well as in the diverging sections of channel for

fixed Re, O and ¢ . It is observed that increase in € increases
the pressure gradient over the stenoised region. The magnitude of
adverse pressure gradient is greater than in the converging part as
compared with the diverging part. Straight line presents the
pressure gradient in the absence of stenosis, which is known as
Poiseuille flow. Figure 13 shows the effect of Re over the

pressure gradient for fixed€, & and second grade parameters
(o, ﬂ ). It is observed that with the increase in Re pressure

gradient increases and becomes maximum at the throat. The
adverse pressure gradient in the converging and diverging part
indicates flow separation and reattachment from wall also
confirm the results for the velocity field. The magnitude of
adverse pressure gradient is higher in the converging part as
compared with the diverging part. Figure 14 describes the
distribution of pressure gradient for Newtonian and non-
Newtonian behavior. It is observed that with the increase in &
pressure gradient increases over stenosis and becomes negative in
the converging and diverging sections of channel. It is also noted
that the pressure in the non-Newtonian fluid is higher than that in
the Newtonian fluids.
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Figure-5
Separation point for £ in converging region
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Separation point for ¢ in the converging region
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Reattachment point for £ in the diverging region
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Reattachment point for ¢ in the diverging region
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Temperature distribution for Br.
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Pressure distribution for £
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Pressure distribution for Re
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Pressure distribution for &
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Conclusion

In the present article, consideration has been given to second
grade steady state flow of blood through the channel of infinite

length with heat transfer having stenosis of length/ /2. The

highly non-linear equations are solved with the help of regular
perturbation method. The results thus obtained are discussed
graphically in terms of wall shear stress, pressure gradient,
separation and reattachment point and temperature distribution.
It is noted that by setting & = 0, the present model reduces to
viscous case'®. Furthermore, the general pattern of streamlines
is same as discussed in literature*™. Wall shear stress, separation
and reattachment points are similar with available literature™ °.
From the present investigation the following conclusions are
made: i. Increase in Re increases wall shear stress and pressure
gradient. ii. Increase in € increases wall shears stress, pressure
gradient and temperature. iii. Critical Re decreases with an
increase in€. iv. Increase in @ leads to increase in
temperature, pressure gradient and wall shear stress. v.
Temperature increases with an increase in Br and Pe. vi. The
critical Re decreases by increasing @ in the converging and
diverging region.
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