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Abstract  

In this paper, we employ the rational third kind Chebyshev functions on the interval )[0, ∞ , to solve the linear integral 

equations of the second kind over infinite intervals. The properties of the rational third kind Chebyshev functions together 

with the Galerkin method are applied to reduce the integral equation to a system of linear algebraic equations. Using two 

numerical examples, we show that our estimates have a good degree of accuracy. 
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Introduction 

In recent years, many different basic functions have been used 
to estimate the solution of integral equations, such as wavelets1-

3, orthonormal bases4,5 and combination of Block-Pulse 
functions6,7. Besides many different method have been used to 
estimete the solution of mathematics equations, see8,9. 
 
In this paper we are going to use an efficient base that is rational 
third kind Chebyshev functions on )[0, ∞ , which is called RTC 

functions. 
 
Properties of RTC functions 

In this section, we present some properties of RTC functions.  
 
RTC functions: The third kind Chebyshev polynomials are 
orthogonal in the interval 1,1][−  with respect to the weight 

function  

 
1+x

ρ(x)=
1-x

 

and we find that )(xVn  satisfies the recurrence relation10  

 

V (x)=1, V (x)=2x-1,0 1
V (x)=2xV (x)-V (x),    n³2.n n-1 n-2  (1) 

 The RTC functions are defined by  

 
x-L

R (x)=V ,n n
x+L

 
 
 

 

thus RTC functions satisfy  

x-L
R (x)=1, R (x)=2 -1,0 1 x+L

x-L
R (x)=2 R (x)-R (x),    n³2.n n-1 n-2x+L

 
 
 

 
 
 

 (2) 

Function approximation: Let 
2 Lx

w(x)= 2(x+L)
 denotes a non-

negative, integrable, realvalued function over the interval 
)[0,= +∞I . We define  

{ }2L (I)= y:I®R | y is measurable and y <¥ ,w w
 (3) 

 where  
 

( )
1

2¥ 2y = |y(x)| w(x)dx ,0w ∫  (4) 

 is the norm induced by the scalar product  
 

¥<y,z> = y(x)z(x)w(x)dx.0w ∫  (5) 

 Thus 0)}({ ≥nn xR  denote a system which are mutually 

orthogonal under Eq. (5), i.e.,  
 

¥R (x)R (x)w(x)dx=πδ ,0 n m nm∫  (6) 

 where nmδ  is the Kronecker delta function11,12. This system is 

complete in )(2 ILw ; as a result, any function )(2 ILy w∈  can 

be expanded as follows:  
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¥
y(x)= a R (x),k kk=0

∑  (7) 

 with  

1
a = <y,R > .wk kπ

 (8) 

 The ka 's are the expansion coefficients associated with the 

family )}({ xRk . If the infinite series in Eq. (7) is truncated, 

then it can be written as  
N Ty(x)» a R (x)=A R(x),k kk=0
∑  (9) 

 where  
TA=[a ,a ,…,a ] ,N0 1  

TR(x)=[R (x),R (x),…,R (x)] .N0 1  

We can also approximate the function ),( txk  in 2L (I×I)w  as 

follows  
 

Tk(x,t)»k (x,t)=R (x)KR(t),
M  

(10) 

 where K  is an MM ×  matrix that 
1

K = <R (x),<k(x,t),R (t)> > ,     i,j=0,1,…,M.w w2ij i jπ
 

 
Product integration of the RTC functions: We also define the 

matrix aP  as follows  

TaP = R(t)R (t)dt.0a ∫  (11) 

 To illustrate the calculation aP  we choose 1=a , we obtain  

1

83
1 1-4ln2 9-12ln2 17-24ln2 -40ln2 L

3

53 91
1-4ln2 9-8ln2 9-16ln2 -28ln2 -44ln2 L

3 3

59 67 559
9-12ln2 9-16ln2 -24ln2 -36ln2 -52ln2 L

3 3 15

59 67 559 623
17-24ln2 -28ln2 -36ln2 -48ln2 -64ln2 L

3 3 15 15

83 91 559 623
-40ln2 -44ln2 -52ln2

3 3 15 15

=P .

6217
-64ln2 -80ln2 L

105

M M M M M O

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Second kind integral equations over semi-infinite interval: 

In this phase, at first we consider the following second kind 
integral equation,  

ay(x)=f(x)+ k(x,t)y(t)dt,      xÎI,0∫  (12) 

 where )(, 2 ILfy w∈  and )(2 IILk w ×∈ . Then we 

approximate f , y  and k  using (9) and (10) as follows  

Ty(x)»Y R(x),

Tf(x)»F R(x),

Tk(x,t)»R (x)KR(t).

 

With substituting in (12) we have  

( )

T T T Ta     R (x)Y =R (x)F+ R (x)KR(t)R (t)Ydt                   0
T T Ta=R (x)F+R (x)K R(t)R (t)dt Y              0

T=R (x)(F+KP Y),                                          a

∫

∫  

then one can conclude that  
 
(I -KP )Y=F,N+1 a  (13) 

where 1+NI  is the identity matrix. By solving this linear system 

of algebraic equations we can find the vector Y .  
 

Numerical examples 

With best of our knowledge this is the first time that the 
following examples are solved. 
 
Example 1.: Consider the integral equation  
 

1 4y(t)1y(x)=- + dt,     xÎI,0x+1 (x+1)(t+1)∫  (14) 

 with the exact solution 1
y(x)=

x+1
. 

In order to solve this example using the present method, we 

choose 1=L  and 1=N  therefore we have 
1- 1 -114F= ,   K= .

41 -1 1
4

 
   
   
   
  

 

So by solving the linear system (I -KP )Y=F2 1  we obtain 

T1 1
Y=   -

4 4
 
  

, thus  

1 1 1Ty(x)=Y R(x)= R (x)- R (x)= ,0 14 4 x+1
 

which is the exact solution.  
 
Example 2.: Consider the integral equation  
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-x-2 -x-t1y(x)=e + 2e y(t)dt,     xÎI,0∫  (15) 

 with the exact solution -xy(x)=e . In Table 1, a comparison is 
made between the values of y  obtained using the proposed 

method with N=9 , 14 and the exact solution.   
 

Table-1 

Numerical results of )(xy  for Example 2 

x  )(9 xy  )(14 xy  Exact 

0 1.01004 1.00109 1.00000 
1 0.36957 0.36791 0.36788 
2 0.13467 0.13540 0.13534 
3 0.05060 0.04972 0.04979 
4 0.01924 0.01836 0.01832 
5 0.00712 0.00681 0.00674 
6 0.00206 0.00248 0.00248 
7 0.00042 0.00085 0.00091 
8 0.00050 0.00026 0.00034 
9 0.00020 0.00006 0.00012 
10 0.00009 0.00001 0.00005 

 

Conclusion 

The fundamental goal of this paper has been to construct an 
approximation to the solution of the second kind integral 
equations in a semi-infinite interval. In the above discussion, the 
Galerkin method with RTC functions, which have the property 
of orthogonality, were employed to achieve this goal. The 
contribution of this paper is that we do not reform the problem 

to a finite domain and with an small value of N  accurate 
results are obtained. There is a good agreement between 
obtained results and exact values that demonstrates the validity 
of the present method for this type of problems and gives the 
method a wider applicability.  
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