International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Structural and Optical Properties of Pure and Copper Doped NiS Nanoparticles

Author Affiliations

  • 1 School of Physics, Devi Ahilya University, Vigyan Bhawan, Khandwa Road, Indore, INDIA
  • 2 Government Arts and Science College, Ratlam, INDIA
  • 3 Shri Dadaji Institute of Technology and Science, Indore Road, Khandwa, INDIA

Res. J. Recent Sci., Volume 2, Issue (ISC-2012), Pages 326-329, February,2 (2013)

Abstract

In this paper we report tuning of band gap of NiS nanoparticles by doping these with Cu. The pure and Cu doped NiS nanoparticles were prepared following chemical route. These nanoparticles were characterized by XRD, and UV-VIS spectroscopy. The XRD records show well-formed nanocrystalline particles. The particle size of NiS nanoparticles as determined using Scherrer formula is found to be about 43 nm. The particle size is found to decrease in Cu doped NiS nanoparticles. UV-VIS spectroscopy was used to determine the band gap of these nanoparticles. The band gap of NiS nanoparticles is found to be 3.63eV. The effect of doping Cu on the structural and optical properties of NiS nanoparticles is described

References

  1. Klimov V.I., Mikhailovsky A.A., Xu S., Malko A. Hollingsworth, J.A., Leatherdale C.A., H.-Eisler J., Bawendi M.G., Science, 290, 314 (2000)
  2. Czekaj C.L., Rau M.S., Geoffroy G.L., Guiton T.A., Pantano C.G., Inorg. Chem. 27, 3267 (1988)
  3. Tenne R., Margulis L., Genut M., Hodes G., Nature, 306, 444 (1992)
  4. Li H., Chai L., Wang X., Wu X., Xi G., Liu Y., Qian Y.T., Cryst. Growth and Design ,7, 1918 (2007)
  5. Yang H.S., Holloway P.H., Ratna B.B., J. Appl. Phys. 93, 586 (2003)
  6. Oviedo-Roa R., Martinez-Magadan J. M., Illas F., J. Phys. Chem. B, 110, 7951 (2006)
  7. Friemelt K., Lux-Steiner M.C., Bucher E., J. Appl. Phys., 74, 5266. (1993)
  8. Koyano M., Nishiate H., Int. Conf. Thermoelectr. 23, 130/1–130/4 (2004)
  9. Srivastava S.K., Avasthi B. N., J. Mater. Sci., 27, 3693 (1992)
  10. Wang J., Chew S.Y., Wexler D., Wang G. X., Ng, S.H., Zhong,S., Liu H.K., Electrochem. Commun., 9, 1877. (2007)
  11. Kapinus E. I.; Viktorova T. I.; Khalyavka T. A. Theor. Exp. Chem., 42, 282 (2006)
  12. JCPDS, ICDD, CARD No. 65-3686
  13. Klug H.P. and Alexander L.E., X-ray Diffraction Procedures for polycrystalline and Amorphous Materials “ (New York: Wiley), 2nd Edition, (1974)
  14. Sarmah K., Sarma R., Das H.L., Chalcogenide letters , 5, 153 (2008)
  15. Willian A.P.J., Mathematical Theory of X-Ray Powder Diffractometry, New York, Gordon and Breech, (1983)
  16. Tauc J. (Ed.), Amorphous and Liquid Semiconductor, Plenum Press, New York, 159 (1974)
  17. Xu Y. and Schoonen M.A.A., Am.Mineral ., 85, 543 (2000)
  18. Brus L.E., J.Chem. Phy., 80, 4403 (1984)