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Abstract 

The Packet classification is a key function of the firewalls and routers. Internet firewalls, routers and service providers 

perform different operations at different flows. With the increasing demands on router performance, there is a need for 

algorithms that can classify packets quickly with minimal storage requirements.  This paper presents a heuristic, called 

Packet Classification Algorithm Based on Geometric Tree by using Recursive Dimensional Cutting (DimCut), which 

exploits the structure found in classifiers. It, like the previously well-known algorithm, HiCutsis based on a decision tree 

structure. After examinationDimCut algorithm, to classify packets based on five header fields, it is found that the algorithm 

can classify packets quickly. Our proposal extends HiCuts with new heuristics ideas and new implementing techniques 

while retaining HiCuts’ basic framework. The DimCut algorithm has two separated levels, pre-processinglevel (tree 

construction and making index table) and search level. The algorithm provides a full description of the chief data 

structures and tuneable parameters. We explain details that describe the pre-processing algorithm and the search process, 

also provide the source code that permits the actual implementation. 
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Introduction 

Network routers can provide advanced network services after 

being enabled by packet classification. Rather than the basic 

packet forwarding, this also includes network security, policy-

based routing, and quality of service (QoS) assurance. High 

performance algorithms are of great interest to academics and 

industrialists. Large scale packet classification has become 

driving factors of network security and QoS.  Firewalls also 

have to classify packets, where speed of decision making to 

deny or not to deny, is of utmost importance. 

 

The basic problems of packet classification are huge rule sets 

(size of rule set), increasing network traffic (traffic intensity) 

and large dimensionality of the packet attributes data base (large 

item sets)
1-7

. 

 

In this paper we have proposed improvements over existing 

nonlinear type of classification algorithms, in particular the ones 

which use HiCuts
8
. The improvements have been validated 

through simulated trials. In brief, we contribute to the proposal 

to examine new heuristic methods of packet classification that 

have good average case performance and utilize storage 

reasonably and provide benchmark results on the practical 

performance of our proposed algorithms. 

 

The paper is organized as follows. Section 1 surveys from high 

level perspective the existing algorithms to capture the basic 

ideas, as each approach has its own advantages and 

disadvantages with reference to throughput, cost, facility of 

implementation and scalability. Section 2 deals with details of 

our algorithm. Section 3 evaluates issues of implementation. 

Section 4 presents the results of experiments. Section 5 takes a 

comparative approach to related work. We conclude in section 

6. 
 

Packet Classification Problem 

Marking a packet to allow or disallow is called the process of 

classification.  A set of policy rules control the acceptance or 

denial of packets. A packet classifier must compare header 

fields of every incoming packet against a set of rules in order to 

assign a flow identifier that is applied insecurity policies
8,9,10

. 
 

A rule must specify a set of headers and the policy to be in use.  

We may define formally a rule set as:  
 

Definition:  A Rule Space is a collection of rules, specified as a   

table (flat data base) with, Columns as RuleID, ‘D’ header field 

specification as H1, H2… Hd, and an Action column. Each 

record (Row) specifies a rule. Number D would be the 

Dimension of the rule space. 
 

Process of classification requires, applying the rules from the 

top. Attributes of the packet to be classified are matched with 

values in the Header columns, and if successful the Action 

becomes applicable. 

 

For example, a typical Iptables rule may specify: A INPUT -p 

tcp --dport 22 -j ACCEPT 
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This rule is to be interpreted as   “a TCP packet is to be accepted 

if the destination port is equal to 22 “.   If no match is found the 

next rule in the table is to be tested. In general the process 

continues sequentially till a match is found.

approach would be a brute force method and the complexity will 

be the worst.  

 

If n1, n2… nk are the possible distinct values columns can take 

then the complete Rule space will containrows in all. 

 

N = (n1 n2 ….  nD)   =π(ni) 

Here the operator π  stands for the product. Here we have every 

possible value of this would mean any linear search would 

require complexity of O (N), which is not desirable.  Hence 

there has been a need for design of better algorithms, and this 

has been a topic of interest among researchers. For H1 = source 

IPV4, H2 = destination IPV4, H3= Source Port No, H4= 

destination Port No and H5 = 4 possible choices for protocol, N 

would amount to, 2
32

x 2
32

 x 2
16

x2
16

 x 2

combinations to search from. In practice all possible

which a header may take are not present in the rule base.  

 

Background: Algorithms for packet classification, found in 

literature, are of four types. Typification is according to their 

basic design and the process of classification adopted

four types are: The Exhaustive Search: brute force method and 

obviously is the most inefficient. Decision

construction decision tree are followed by enhanced searches.

Decomposition: decompose the multiple fi

instances of single field searches, perform independent searches 

on each packet field, and then combine the resul

partition the filter set according to the number of specif

in the filters, probe the partitions or a subset of the partitions 

using simple exact match searches. 

 

When alternatives are designed testing becomes an issue.  

Performance metrics for testing such algorithms would include: 

{Search speed, Storage requirements, Fast updates, Scalability, 

Flexibility}. 

 

A classification algorithm should support general rules, 

including prefixes, range, exact value and wildcards.  Providing 

better data structures to Rule Bases, assigning 

to avoid conflicting and multiple matches, and

the Rule Base, have been some of the common techniques used 

by various researchers to improve the algorithms

example of decision tree-based packet classification algorithm. 

It takes the geometric view of the packet classification

Since it forms the basis for our new algorithm, we discuss these 

in brief in the next step. 

 

HiCuts: Gupta and McKeown introduced a seminal technique 

called Hierarchical Intelligent Cuttings (HiCuts)

the rule set defines a d-dimensional rectangle in d

space, where d is the number of fields in the rule. The algorithm 

preprocesses the rule set to build a decision tree with leaves 
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This rule is to be interpreted as   “a TCP packet is to be accepted 

t is equal to 22 “.   If no match is found the 

next rule in the table is to be tested. In general the process 

continues sequentially till a match is found. Of course this 

approach would be a brute force method and the complexity will 

n2… nk are the possible distinct values columns can take 

then the complete Rule space will containrows in all.  

stands for the product. Here we have every 

possible value of this would mean any linear search would 

require complexity of O (N), which is not desirable.  Hence 

there has been a need for design of better algorithms, and this 

among researchers. For H1 = source 

IPV4, H2 = destination IPV4, H3= Source Port No, H4= 

destination Port No and H5 = 4 possible choices for protocol, N 

x 2
2
= 2

98
~ 88K 

In practice all possible values 

which a header may take are not present in the rule base.   

Algorithms for packet classification, found in 

literature, are of four types. Typification is according to their 

cation adopted
11

.  The 

The Exhaustive Search: brute force method and 

obviously is the most inefficient. Decision Tree: prior 

construction decision tree are followed by enhanced searches. 

field searches into 

eld searches, perform independent searches 

eld, and then combine the results. Tuple Space: 

ccording to the number of specified bits 

subset of the partitions 

When alternatives are designed testing becomes an issue.  

Performance metrics for testing such algorithms would include: 

{Search speed, Storage requirements, Fast updates, Scalability, 

cation algorithm should support general rules, 

xes, range, exact value and wildcards.  Providing 

to Rule Bases, assigning priorities to rules 

to avoid conflicting and multiple matches, and pre processing 

the Rule Base, have been some of the common techniques used 

by various researchers to improve the algorithms
11

. HiCuts is an 

based packet classification algorithm. 

It takes the geometric view of the packet classification problem.  

Since it forms the basis for our new algorithm, we discuss these 

Gupta and McKeown introduced a seminal technique 

called Hierarchical Intelligent Cuttings (HiCuts)
8
. Each rule in 

sional rectangle in d-dimensional 

elds in the rule. The algorithm 

preprocesses the rule set to build a decision tree with leaves 

containing a subset of rules with number of rules bound by a 

prescribed threshold.  Packet header 

decision tree until a leaf is reached, i.e. a subset is identified for 

further processing. The rules from the leaf subsets are then 

linearly searched for a match.   

 

A simple illustrative example
1
: Figure1 has a Rule set of 

rules {R1, R2, R3, R4, R5} represented in a two dimensional 

space.  Here N = 5, D = 2.  The illustration assumes a threshold 

of t=2, which is the maximum number of rules a subset at leaf 

node can contain. 

Figure-

The rule set has two fields, each re

and 5 rules are shown geometrically

Figure-

A geometric view of a tree constructed according to cutting 

of the rule set
 

The root node covers all portions of the d dimensional space. At 

the top level, whole space is cut along t

to generate 4 equal sized sub-regions. One can see from 

that this has resulted in to two leaf nodes, since they have rules 

less than or equal to t.  In the next step, two of the remaining 

sub-regions are chosen to cut further. The left most node has a 

horizontal cut, whereas the other one has a vertical cut again (x

axis). At the first level there were four giving us two leaf nodes, 

and two nodes which required further cuts.  When the second 

level cut is implemented all the subsets have rules less than t, 

meeting the threshold requirement.

node only if the corresponding subset has rules more than the 

threshold (t). 
 

HiCuts utilizes four heuristics for optimizing the tree. The 

two, at each node select the appropriate dimension to cut and the 

number of cuts. The last two, reduce the storage requirement 

and eliminate redundancy in the tree.
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          Res. J. Recent Sci. 

            32 

containing a subset of rules with number of rules bound by a 

ader fields must traverse the 

decision tree until a leaf is reached, i.e. a subset is identified for 

further processing. The rules from the leaf subsets are then 

Figure1 has a Rule set of five 

rules {R1, R2, R3, R4, R5} represented in a two dimensional 

space.  Here N = 5, D = 2.  The illustration assumes a threshold 

of t=2, which is the maximum number of rules a subset at leaf 

 
-1 

fields, each rectangle represents a rule 

and 5 rules are shown geometrically 

 
-2 

A geometric view of a tree constructed according to cutting 

of the rule set 

The root node covers all portions of the d dimensional space. At 

the top level, whole space is cut along the x-axis (vertical cuts) 

regions. One can see from figure 2 

that this has resulted in to two leaf nodes, since they have rules 

less than or equal to t.  In the next step, two of the remaining 

ther. The left most node has a 

horizontal cut, whereas the other one has a vertical cut again (x-

axis). At the first level there were four giving us two leaf nodes, 

and two nodes which required further cuts.  When the second 

e subsets have rules less than t, 

requirement. A cut is implemented at a 

the corresponding subset has rules more than the 

HiCuts utilizes four heuristics for optimizing the tree. The first 

node select the appropriate dimension to cut and the 

number of cuts. The last two, reduce the storage requirement 

and eliminate redundancy in the tree. 
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Issues with HiCuts are that a larger number of cuts at a node 

reduce the tree depth, but may increase rule replication and also 

the number of children, which may not achieve good rule 

separation. The second heuristic attempts to maximize the 

number of cuts, and hence minimize the depth, while limiting 

the total number of rules at all the nodal children with a factor, 

called space factor. The redundant sibling nodes which share an 

identical set of rules are the third heuristic target. This one 

merges such siblings into one node. Another kind of redundancy 

exists when a higher-priority rule overlaps a lower-priority rule 

completely within a node’s subspace. In which case, no packet 

would ever match the lower-priority rule which can be removed, 

as done by the fourth heuristic
12

. 
 

The HiCuts has specifications such as scalability, low memory 

consumption and reasonable speed, to make it one of the most 

efficient packet classification algorithms. But choosing suitable 

point for making cut in the intended dimension is what that the 

algorithm designers haven’t worked on it
9
. 

 

New Algorithm 

Choosing suitable point for making cut, in HiCuts algorithms 

still seems to be a problem that algorithm designers haven’t 

worked sufficiently on it
9
. Our algorithm adds some 

modifications and improvements on the HiCuts algorithm, 

developed by Gupta and McKeown.Consider the following 

definitions:  
 

Definition: Let wc(H) be the count of wild card entries in the 

column H in the whole of the rule set. 

 

Definition: Let gd(H) be the geometric distance associated with 

column H in the whole of the rule set. 

 

We make use of these values associated with every field in the 

rule set to define appropriate heuristics for the purpose of 

selecting the dimensions   for the cuts. We follow these guide 

lines and principles: i. Dimension Selection: Select the two 

fields Ha, Hb which have the least wc( ) values, as the two 

selected dimensions or alternatively we select Ha, Hb which 

have least gd( ) values. ii. Number of cuts and Bucket size: 

Compute the number of cuts as the number of cuts, and the 

bucket size threshold as: NC1 = [20 + (N/1000)] = Number of 

cuts, B = [N/ (20 + (N/1000))] = Bucket size (The threshold). 

Here   N = Total Number of rules, in the complete rule set, iii. 

Separate those rules in the same chosen field as cut dimension 

which have wildcard value and shift them to the bucket and 

reject their use for making the decision tree. iv. Building index 

tables to facilitate search within: Build an index table for each 

bucket. v. The number of cuts has to be decided at the first time 

cutting and also the bucket size threshold of the algorithm has to 

be identified, with the purpose of trying to avoid splitting of 

rules while cutting. vi. Recursion: The best dimension for next 

cut level is identified after the first cut, again using the same 

principles. vii. New algorithm has two separate levels, pre-

processing level (tree construction and making index table) and 

search level. viii. Use the Link list data structure at the input 

stage and work on large rule sets. 

  

The new algorithm provides a full description of the chief data 

structures and tunable parameters. We explain details that 

describe the preprocessing algorithm and the search process and 

provide the source code that permits the actual implementation. 

 

Packet classification by Decision Tree Algorithm is to construct 

a decision tree where the leaves of the tree contain rules or 

subsets of rules. In order to perform a search using a decision 

tree, one should construct a search key from the packet header 

fields and traverse the decision tree by using individual bits or 

subsets of bits from the search key. The search continues until 

reaching a leaf node storing the best matching rule. A node 

becomes a leaf of the tree when it has few threshold rules. 

 

To build a decision tree data structure, the algorithm carefully 

preprocessesthe rules. The decision tree is checked for a leaf 

node every time a packet arrives, as it stores small set of rules 

and when the search tree is constructed the choice about the 

shape and depth of the decision tree and local decision are 

made. As far as possible minimum repetition of rules inside the 

bucketsis adhered to by the preprocessing algorithm that uses a 

heuristic for distributing rules inside a bucket. 

 

It’s shown how to classify rules in figure 3, 4, 5, and 6, in this 

example rules onlyhave two fields (source Ip address and 

destination Ip address), each field has 4 bits only. 

Priority Source Add. Destination Add. 

R1 1010 * 

R2 1100 1010 

R3 0101 1001 

R4 * 10* 

R5 111* 11* 

R6 001* 1100 

R7 * 00* 

R8 0* 10* 

R9 0110 011* 

R10 1* 11* 

Figure-3 

In this example rules are shown in priority that, have two 

fields (source Ip address and destination Ip address), each 

field only made of 4 bits 
 

Optimize the decision tree: The decision tree has been 

constructed by new algorithm. Now, to optimize the decision 

tree will do according existent methods
8,9

: Eliminating the 

empty nodes, merging the nodes that are associated with the 

same set of rules, in case the region covered by the rules, is 

smaller than the overall size of the region governing the node, 

one shrinks the region associated with the node to minimum 

cover, and if the same rule repeated in all nodes in the same 

level, then separate that rule and make a bucket of that for use at 

the time of search figure 6. Set the default action for those entry 

packets that do not match with any bucket. All the rules in all 
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the buckets should be sorted by priority. 

processing ends with tree construction and bucket making of 

rules, figure 7. 

Figure-4 

Each rule has two fields, each rectangle represents a rule 

and 10 rules are shown in geometrically view

Figure-5 

Cutting the geometric view of rule set and decompose

rule set space into small rules buckets

Figure-6 

Tree is constructed according cutting the geometric view of 

rule set 
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 First step of pre 

construction and bucket making of 

 

fields, each rectangle represents a rule 

and 10 rules are shown in geometrically view 

 

Cutting the geometric view of rule set and decompose the 

rule set space into small rules buckets 

 

Tree is constructed according cutting the geometric view of 

 

Figure-

Tree construction and bucket making of rules after 

optimization

 

Index table making: For the field that is chosen for 

dimension in each bucket will make an index table. The 

framework will contain two stages: an index table and rule 

buckets. 

 

Use the same field of the input packet to search in the index 

table. If the specific field matches, the matching fi

selected out of the set in the bucket via linear search (using 

smaller set of rules). So, ends the preprocessing level and 

partitioning rules. 

 

All incoming packets need to check at the fields selected during 

preprocessing. The decision tree traverses to 

that cover the incoming packet. There is priority sorting of all 

rules. When first match index is found a packet will traverse all 

regions of possible belonging. The packet will check the all 

header fields of governing rules linearly. The mo

packet is picked up via those that match completely. So the final 

action (Accept/Deny) will be taken for that incoming packet and 

the search will end. 

 

It supports incremental update but in case of significant 

decreasing performance it needs reconstruction. Updating will 

work in the same manner as the search algorithm. For firewalls 

a very slow update rate would suffice and entries can be added 

manually or infrequently. 
 

The Briefed Preprocessing Algorithm: 

Read rules and create a link list to store them, ii. Find the cut 

dimension by using any of 2 heuristics (any dimension that has 

the smallest geometric length/ any dimension that has the 

smallest number of wildcards), iii. Calculate the number of cuts 

by using of ( NC= [20+(Number of rules/1000)]) and Calculate 

the Threshold T= [(Number of rules)/NC], iv. Separate those 

rules that has wildcard value in the same chosen field as cut 

dimension in the bucket, v. Construct the tree, For i=1 to NC do, 

Create buckets (nodes), Assign the rules that covered by buckets

(nodes) region , If  the number of rules in bucket > Threshold, 

Split buckets(nodes), Create the index table for rules in buckets, 

Optimize and compress the tree, END.
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-7 

Tree construction and bucket making of rules after 

optimization 

For the field that is chosen for cut 

dimension in each bucket will make an index table. The 

framework will contain two stages: an index table and rule 

Use the same field of the input packet to search in the index 

ic field matches, the matching filter will be 

selected out of the set in the bucket via linear search (using 

So, ends the preprocessing level and 

All incoming packets need to check at the fields selected during 

preprocessing. The decision tree traverses to find the buckets 

that cover the incoming packet. There is priority sorting of all 

rules. When first match index is found a packet will traverse all 

regions of possible belonging. The packet will check the all 

header fields of governing rules linearly. The most prioritized 

packet is picked up via those that match completely. So the final 

action (Accept/Deny) will be taken for that incoming packet and 

It supports incremental update but in case of significant 

reconstruction. Updating will 

work in the same manner as the search algorithm. For firewalls 

a very slow update rate would suffice and entries can be added 

The Briefed Preprocessing Algorithm: Preprocessing part: i. 

nd create a link list to store them, ii. Find the cut 

dimension by using any of 2 heuristics (any dimension that has 

the smallest geometric length/ any dimension that has the 

smallest number of wildcards), iii. Calculate the number of cuts 

= [20+(Number of rules/1000)]) and Calculate 

the Threshold T= [(Number of rules)/NC], iv. Separate those 

rules that has wildcard value in the same chosen field as cut 

dimension in the bucket, v. Construct the tree, For i=1 to NC do, 

Assign the rules that covered by buckets 

(nodes) region , If  the number of rules in bucket > Threshold, 

Split buckets(nodes), Create the index table for rules in buckets, 

Optimize and compress the tree, END. 
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The Briefed Search Algorithm: i. Use Search pa

Packets, For each Packet: Find the buckets that cover the packet, 

Search in the related index table of those buckets, Find the 

specific matched rules, Select the higher priority one as a target, 

Act as its action, iii. End 

 

Experimental Methodology 

We have implemented the common linear algorithm (L) and the 

current algorithms which we call NewHicut2D and 

NewHicut3D in language C, (GCC 4.4). The codes were 

compiled with the Code::Blocks 10.05, which is a full

IDE all on an Intel Pentium processor 2.00 GHz with RAM 2.00 

GB, 32-bit OS, running Microsoft Windows 7 Ultimate and the 

Oracle VM Virtual Box, so virtual environment were used for 

all tests. The plan of the simulated experimented was as shown 

in figure 8. 

 

Figure-8 

Simulated experimented methodology model

 

 

The implementation algorithms constituted of:

  3 Types of packet sets generated:     Namely Random

  Headers constituting the rules:        {Source IP and Destination IP (Exact/prefix), 

                                                             Source Port and Destination Port (Exact value, any, ranges) and 

                                                             Protocol (TCP, UDP, ICMP, ANY)} 

AndActions:                                   (Accept; Deny, Log, 

  Algorithms implemented:                 L   

                                                            Tree2D  

                                                            Tree3D   
 

 

 

The observation recorded constituted of: 

1. The Packet Classification Time:      

2. PPS (Number of Packet Per Second Classification)

3. Number of Search till packet classification done   

4. The Preprocessing Time/Tree Construction Time:

5. Other parameters were:The number of buckets (leaves)/Number of Cuts,

6. The number of rules 100 … 100000,    and varied threshold sizes.

7. Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the 

statistical software SPSS analyzed it.
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Use Search part: Read 

Packets, For each Packet: Find the buckets that cover the packet, 

Search in the related index table of those buckets, Find the 

specific matched rules, Select the higher priority one as a target, 

We have implemented the common linear algorithm (L) and the 

current algorithms which we call NewHicut2D and 

language C, (GCC 4.4). The codes were 

compiled with the Code::Blocks 10.05, which is a full-featured 

entium processor 2.00 GHz with RAM 2.00 

bit OS, running Microsoft Windows 7 Ultimate and the 

Oracle VM Virtual Box, so virtual environment were used for 

The plan of the simulated experimented was as shown 

 

Simulated experimented methodology model 

Experimental Results  

By comparing the linear with the new

analysis and graphs, it was possible to prove the proposed 

algorithm based on decision tree makes packet classification 

fast. Search performance is evaluated by running through it 

large number of random packets that obey the weight 

specifications. We used worst case scenario to do the best 

evaluation. 

 

Note that our reference implementations are only for the 

purpose of simulation and evaluation; thus, the source code is 

not optimized for software. The ambiguity in algorithm details 

makes the algorithm evaluation and comparison a bit difficult. 

In our implementation, we allow users to freely configure the 

parameters. To compare the algorithms under a particular rule 

set, we choose the configurations that lead to the best overall 

performance. 

 

Analysis Data collection: The statistical package SPSS was 

used for   Normality test (Kolmogorov

T Test. It is duly cautioned that our models show results of 

average case performance.  

 

Kolmogorov–Smirnov test is testing data for normality of the 

distribution. It shows our samples are standardized by 

comparison with a standard normal distribution. The significant 

score is greater than 0.05, then the data significantly deviate 

from a normal, so our data is normal as showed in table 1. So 

according to the Normal data, one can decide about which 

statistical tests need to be done. 

thms constituted of:  

Namely RandomSet / Controlled number of repeats/ worst case scenario.

Headers constituting the rules:        {Source IP and Destination IP (Exact/prefix),  

Source Port and Destination Port (Exact value, any, ranges) and  

Protocol (TCP, UDP, ICMP, ANY)}  

AndActions:                                   (Accept; Deny, Log, Forward, Nothing) 

 (Common linear Algorithm) 

Tree2D    (NewHiCuts2D or DimCut2D) 

Tree3D    (NewHiCuts3D or DimCut3D) 

                        LPC,Tree2DPC,Tree3DPC 

Number of Packet Per Second Classification)LPPS,Tree2DPPS,Tree3DPPS 

Number of Search till packet classification done   LSearch,Tree2DSearch,Tree3DSearch  

The Preprocessing Time/Tree Construction Time:          Tree2DSearch,Tree3DSearch  

Other parameters were:The number of buckets (leaves)/Number of Cuts, Depth of the tree structure,

The number of rules 100 … 100000,    and varied threshold sizes. 

Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the 

statistical software SPSS analyzed it. 
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By comparing the linear with the new algorithm, and using data 

analysis and graphs, it was possible to prove the proposed 

algorithm based on decision tree makes packet classification 

Search performance is evaluated by running through it 

large number of random packets that obey the weight 

specifications. We used worst case scenario to do the best 

Note that our reference implementations are only for the 

and evaluation; thus, the source code is 

not optimized for software. The ambiguity in algorithm details 

makes the algorithm evaluation and comparison a bit difficult. 

In our implementation, we allow users to freely configure the 

algorithms under a particular rule 

set, we choose the configurations that lead to the best overall 

The statistical package SPSS was 

used for   Normality test (Kolmogorov–Smirnov), Paired sample 

utioned that our models show results of 

Smirnov test is testing data for normality of the 

distribution. It shows our samples are standardized by 

comparison with a standard normal distribution. The significant 

greater than 0.05, then the data significantly deviate 

from a normal, so our data is normal as showed in table 1. So 

according to the Normal data, one can decide about which 

Set / Controlled number of repeats/ worst case scenario. 

 

structure, Threshold/Bucket size 

Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the 
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The t-test is a statistical method that compares the significant 

difference between the means of two groups of data. The 

dependent sample t-test (paired sample T Test) enables us to 

compare packet classification time, number of 

second, search number between linear and tree attempts. In this 

test as the significant score is 0.000 (which is less than 0.05) as 

showed in table 2; therefore there is a significant difference 

between the means of observed values from L (linear) and 

Tree2D (NewHighCuts2D) and Tree3D (NewHighCuts3D).  

Mean times show that times are the least for Tree3D algorithms 

(table 1). 

 

Figures (Graphs): In all figures (graph) the L means linear 

search algorithm, the 2DTree means new algorithm by using 

two fields of rules to construct tree and the 3D

new algorithm by using three fields of rules to construct tree and

the incoming packets are fixed to 10000 numbers at worst case 

condition that means, force the incoming packets to trace till the 

end of tree, by setting the Protocol field to X value so the 

incoming packet doesn’t match with any of the rules.

 

Three of the following figures (graphs) show dependency of PC 

time (figure 9), PPS (figure 10) and search times (figure 11) 

respectively on  increasing number of rules (X

rules  repeating once in the rule set and  10% rules repeating 

twice in the rule set. In all cases the Number of cuts is set as [20 

+ (R/1000)] and the Bucket size threshold is set as [R/ Number 

of cuts]. 

 

We see that, as the rules number increases, PC time required 

increases, Packet per Second processing reduces (quickly,the Y 

axis is on log scale) and vary widely across the tree algorithms. 

In case of Tree algorithms’ number of Packet per Second 

processing seem to be stabilizing as rulesincreases.  However 

the newer algorithms seem to be more efficient than the linear 

one. Search time is far lower in case the proposed algorithms 

compared linear algorithm as can be seen from figure 11.

 

Shows the data significantly deviate from a normal distribution
One-Sample 

Kolmogorov-

Smirnov 

Rules LPC Tree2D.PC 

N 13 13 13 

Normal 

Parameters Mean 

Std. Deviation 

43923.08 49838.587 482.88492 

33752.683 44356.33781 347.514837 

Kolmogorov-

Smirnov Z 
.524 .632 .523 

Asymp. Sig. (2-

tailed) 
.946 .819 .947 
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test is a statistical method that compares the significant 

difference between the means of two groups of data. The 

aired sample T Test) enables us to 

compare packet classification time, number of packet per 

ree attempts. In this 

test as the significant score is 0.000 (which is less than 0.05) as 

showed in table 2; therefore there is a significant difference 

of observed values from L (linear) and 

ee2D (NewHighCuts2D) and Tree3D (NewHighCuts3D).  

Mean times show that times are the least for Tree3D algorithms 

the L means linear 

search algorithm, the 2DTree means new algorithm by using 

rules to construct tree and the 3D Tree means the 

new algorithm by using three fields of rules to construct tree and 

the incoming packets are fixed to 10000 numbers at worst case 

condition that means, force the incoming packets to trace till the 

ee, by setting the Protocol field to X value so the 

incoming packet doesn’t match with any of the rules. 

show dependency of PC 

earch times (figure 11) 

g number of rules (X- axis), with 20 % 

rules  repeating once in the rule set and  10% rules repeating 

twice in the rule set. In all cases the Number of cuts is set as [20 

hreshold is set as [R/ Number 

, as the rules number increases, PC time required 

increases, Packet per Second processing reduces (quickly,the Y 

axis is on log scale) and vary widely across the tree algorithms. 

In case of Tree algorithms’ number of Packet per Second 

stabilizing as rulesincreases.  However 

the newer algorithms seem to be more efficient than the linear 

one. Search time is far lower in case the proposed algorithms 

compared linear algorithm as can be seen from figure 11. 

Figure-

A comparison between the linear and the Non Linear (2D, 

3D) algorithm, as we increase rules to measure the packet 

classification time (micro second)

 

Figure-10

A comparison between the linear and the Non Linear (2D, 

3D) algorithm, as we increase rules to measure the number 

of packet per second processing

 

Table-1 

Shows the data significantly deviate from a normal distribution 

Tree3D.PC LPPS 
Tree 

2.DPP 
Tree3.DPPS LSearch 

13 13 13 13 13 

364.90423 12771.92 57438.62 73103.46 439230769.23 

271.312217 34797.713 72949.864 91582.243 337526827.044 

.656 1.546 .991 .922 .524 

.783 .017 .280 .363 .946 
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the linear and the Non Linear (2D, 

3D) algorithm, as we increase rules to measure the packet 

classification time (micro second) 

 
10 

A comparison between the linear and the Non Linear (2D, 

3D) algorithm, as we increase rules to measure the number 

of packet per second processing 

Tree2.DSearch Tree3.DSearch 

13 13 

32632028.69 30242754.00 

23576611.137 22539806.842 

.497 .505 

.966 .961 



Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)           

 International Science Congress Association

Shows significant difference between the means of the linear and Tree 

Paired Samples Correlations

Pair 1 L.PC & Tree2D.PC 

Pair 2 L.PC & Tree3D.PC 

Pair 3 L.PPS & Tree2D.PPS 

Pair 4 L.PPS & Tree3D.PPS 

Pair 5 L.Search& Tree2D.Search 

Pair 6 L.Search& Tree3D.Search 

 

Figure-11 

A comparison between the linear and the Non Linear (2D, 

3D) algorithm as we increase rules to measure the number 

of search times 
 

Figure-12 

A comparison between the different numbers of cuts for 

3DTree algorithm as we increase rules to measure the 

number of packet per second processing

 

With incoming packets (fixed to 10000 numbers) at worst case 

condition and varying number cuts the behavior found is shown 

in figure 13. The Y axis shows the number of 

processed in log scale. Line graphs correspond to NC =5, 10, 2, 

30, 50,100 and the Bucket size threshold is set as (R/ Number of 

cuts).In contrast, points that match with the NC = [20 + 

_______________________________________________
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Table-2 

Shows significant difference between the means of the linear and Tree attempts

Paired Samples Correlations N Correlation

13 .992 

13 .998 

13 .907 

13 .931 

13 .999 

13 1.000

 

A comparison between the linear and the Non Linear (2D, 

3D) algorithm as we increase rules to measure the number 

 

numbers of cuts for 

3DTree algorithm as we increase rules to measure the 

number of packet per second processing 

With incoming packets (fixed to 10000 numbers) at worst case 

condition and varying number cuts the behavior found is shown 

umber of packet per Second 

Line graphs correspond to NC =5, 10, 2, 

hreshold is set as (R/ Number of 

In contrast, points that match with the NC = [20 + 

(R/1000)], almost shows higher number of Packet per Second 

processing across increases in rules. The Figure 12, shows set 

NC to [20 + (R/1000)], gives us better results.

 

Figure-13

A comparison between the Non Linear (2D, 3D) algorithm 

as we increase rules to measure the 

tree construction time

 
The preprocessing time or tree construction time (f

shows that in case of the new algorithms preprocessing time/tree 

construction time are reasonable. In addition to the number of 

cuts, the dimension to cut at each internal decision tree node is 

also critical to the algorithm performance. A larger bucket size 

can help to reduce the size and depth of a decision tree, but it 

can induce a longer linear search time, so smaller bucket size 

has the counter-effects. By experiments we could determine the 

appropriate bucket size for the best tradeoff of storage and 

throughput. Generally, a larger bucket size means a worse 

search processing but this does not always hold.

 

The preprocessing time or the decision tr

increases as the number of rules grows. Smaller bucket size 

requires significantly longer time to process. During 

experiments we found that the algorithm consistently 

demonstrates better performance and scalability on the worst 

case type rule sets with 20% of rules are repeated once and 10% 

of them are repeated twice, than on the other types of rule sets.
 

The decision tree algorithm supports incremental updates to 

some extent. To insert (or remove) a rule, we can just walk the 

decision tree similar to the search process using the rule 

specification. However, since the rules may overlap, the process 

requires updating on all the affected ones. Moreover, such 
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attempts 

Correlation Sig. 

 .000 

 .000 

 .000 

 .000 

 .000 

1.000 .000 

her number of Packet per Second 

processing across increases in rules. The Figure 12, shows set 

NC to [20 + (R/1000)], gives us better results. 

 
13 

A comparison between the Non Linear (2D, 3D) algorithm 

as we increase rules to measure the preprocessing time or 

tree construction time 

The preprocessing time or tree construction time (figure 13), 

shows that in case of the new algorithms preprocessing time/tree 

construction time are reasonable. In addition to the number of 

to cut at each internal decision tree node is 

also critical to the algorithm performance. A larger bucket size 

can help to reduce the size and depth of a decision tree, but it 

can induce a longer linear search time, so smaller bucket size 

By experiments we could determine the 

appropriate bucket size for the best tradeoff of storage and 

bucket size means a worse 

search processing but this does not always hold. 

The preprocessing time or the decision tree construction 

increases as the number of rules grows. Smaller bucket size 

requires significantly longer time to process. During 

experiments we found that the algorithm consistently 

demonstrates better performance and scalability on the worst 

le sets with 20% of rules are repeated once and 10% 

of them are repeated twice, than on the other types of rule sets. 

The decision tree algorithm supports incremental updates to 

some extent. To insert (or remove) a rule, we can just walk the 

similar to the search process using the rule 

specification. However, since the rules may overlap, the process 

requires updating on all the affected ones. Moreover, such 
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updates lead to a suboptimal decision tree which deteriorates 

performance. The algorithm implementers need to evaluate the 

impact of the preprocessing and incremental update cost for 

their particular applications. 
 

The overall evaluation results are consistent with our 

expectations. Although the decision tree-based algorithm allows 

a nice tradeoff between storage and throughput, but the overall 

performance is not very promising. More study need to be done, 

at least, to find more systematic ways to fine-tune the 

configurable parameters, better adaptive decision-tree 

construction procedures and rule set structure. All the evaluation 

results should be normalized in a directly comparable way. In 

different applications, some criteria may be more important than 

others, but the evaluation should provide information and let 

readers make their own judgments. Because packet 

classification algorithms are mostly based on heuristics, 

different rule sets with different structures and sizes tend to give 

very different results. 
 

Related Work 

Packet classification continues to be an important challenge in 

network processing
1,4,6,13,15-17

. An excellent survey on Packet 

Classification Algorithms can be found in the survey and 

taxonomy of packet classification techniques paper
11

. 

 

Rule set intersecting is another technique, the key theme being 

that a partial rule match is easier than a full rule match, all at 

once. The packet header can be split into substring and matched 

with a subset of rules whose intersection will give rule to match 

the entire packet header. The Bit Vector (BV) algorithm and the 

aggregated bit vector (ABV) algorithm, represent the subset of 

rules for each partial match by using bit vectors
7,14 

. Different 

methods can be used for partial header lookup. A direct lookup 

table can provide the fastest method even if it consumes more 

storage. Binary search and longest prefix matchingare 

considered as well-established single field look up   

techniques
18,19,20,21

. 
 

As has been already discussed in earlier part of our paper packet 

classification viewed geometrically uses idea on the 

construction of data structures and representation of rules. The 

preprocessing of rule sets uses the strategy of cutting or 

projecting of the multidimensional space.  The basic strategy of 

“divide and conquer” is used, as the initial rule set is too large 

and cannot be handled under limited storage or time. The rule 

set is partitioned and regrouped, so that a packet can quickly 

identify a reduced rule set that includes the matching rule. 

Woo’s modular packet classification, Multidimensional Cuttings 

(HyperCuts), and Hierarchical Intelligent Cuttings (HiCuts)use 

this approach in algorithms
4, 8, 9

. On smaller subsets parallel look 

ups are possible speeding up the classifications significantly
20,21

. 
 

Every technique possesses some limitation. To achieve good 

performance the algorithm has to be designed to combine all 

approaches, their best characteristics and also utilize well the 

time-space tradeoff. 

Conclusion 

An algorithm has been proposed, based on Recursive 

Dimensional Cutting (DimCut), with a decision tree structure. 

Proper implementation of the algorithm can help high 

performance packet classification to enable the routers, firewalls 

and security challenges in high-speed environments.  

 

We tried to search for characteristics of real classifiers that can 

be exploited in pursuit of algorithms that are “fast enough” and 

use “not too much” space. We implemented the new algorithm 

on top of HiCuts by new heuristics and evaluated the proposed 

algorithm by measuring the packet classification Time, the 

number of packet per second processing, the search count, the 

Preprocessing Time/Tree Construction Time, the number of 

buckets (leaves), depth of the tree structure and Threshold. All 

of these have to be explicit constructs and search performance is 

evaluated by running through it large number of random packets 

that obey the weight specifications. 

 

The proposed algorithm was analyzed for the different tradeoffs 

between the bucket size, number of cuts, number of rules, and 

number of levels. The SPSS statistical software analyses data 

while the Normality test that is done by Kolmogorov–Smirnov 

and the Difference test that is the Paired sample T Test, to check 

the final results. According to the results we draw several 

graphs for better representation. 

 

Finally, we note that DimCut can easily be implemented in 

hardware at line speeds using a pipeline and on-chip SRAM. As 

the tree structure constructed by DimCut has levels no greater 

than 5, these needs only 5 pipeline levels, which is well within 

current hardware limits. We believe that DimCut can be a viable 

packet classification algorithm that gives the deterministic 

performance with flexibility for system designers to tradeoff the 

components. We believe this project will benefit the research 

and design community as a whole. Although, the decision tree 

algorithms allow a nice tradeoff between the storage and 

throughput, but the overall performance is still not very 

promising. More study need to be done, at least, to find more 

systematic ways of fine-tuning the configurable parameters, 

better adaptive decision-tree construction procedures and rule 

set structure. 
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