
 Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 2(8), 31-39, August (2013) Res.J.Recent Sci.

 International Science Congress Association 31

Packet Classification Algorithm Based on Geometric Tree by using

Recursive Dimensional Cutting (DimCut)

Hediyeh Amir Jahanshahi Sistani
1
, Sayyed Mehdi Poustchi Amin

1
and Haridas Acharya

2

1Department of Computer Studies and Research, Symbiosis International University, Pune, INDIA
2Allana Institute of Management Science, Pune University, Pune, INDIA

Available online at: www.isca.in
Received 26th February 2013, revised 10th March 2013, accepted 5th April 2013

Abstract

The Packet classification is a key function of the firewalls and routers. Internet firewalls, routers and service providers

perform different operations at different flows. With the increasing demands on router performance, there is a need for

algorithms that can classify packets quickly with minimal storage requirements. This paper presents a heuristic, called

Packet Classification Algorithm Based on Geometric Tree by using Recursive Dimensional Cutting (DimCut), which

exploits the structure found in classifiers. It, like the previously well-known algorithm, HiCutsis based on a decision tree

structure. After examinationDimCut algorithm, to classify packets based on five header fields, it is found that the algorithm

can classify packets quickly. Our proposal extends HiCuts with new heuristics ideas and new implementing techniques

while retaining HiCuts’ basic framework. The DimCut algorithm has two separated levels, pre-processinglevel (tree

construction and making index table) and search level. The algorithm provides a full description of the chief data

structures and tuneable parameters. We explain details that describe the pre-processing algorithm and the search process,

also provide the source code that permits the actual implementation.

Keywords: Packet classification, firewalls, routers, heuristics, dimensional cutting, rules.

Introduction

Network routers can provide advanced network services after

being enabled by packet classification. Rather than the basic

packet forwarding, this also includes network security, policy-

based routing, and quality of service (QoS) assurance. High

performance algorithms are of great interest to academics and

industrialists. Large scale packet classification has become

driving factors of network security and QoS. Firewalls also

have to classify packets, where speed of decision making to

deny or not to deny, is of utmost importance.

The basic problems of packet classification are huge rule sets

(size of rule set), increasing network traffic (traffic intensity)

and large dimensionality of the packet attributes data base (large

item sets)
1-7

.

In this paper we have proposed improvements over existing

nonlinear type of classification algorithms, in particular the ones

which use HiCuts
8
. The improvements have been validated

through simulated trials. In brief, we contribute to the proposal

to examine new heuristic methods of packet classification that

have good average case performance and utilize storage

reasonably and provide benchmark results on the practical

performance of our proposed algorithms.

The paper is organized as follows. Section 1 surveys from high

level perspective the existing algorithms to capture the basic

ideas, as each approach has its own advantages and

disadvantages with reference to throughput, cost, facility of

implementation and scalability. Section 2 deals with details of

our algorithm. Section 3 evaluates issues of implementation.

Section 4 presents the results of experiments. Section 5 takes a

comparative approach to related work. We conclude in section

6.

Packet Classification Problem

Marking a packet to allow or disallow is called the process of

classification. A set of policy rules control the acceptance or

denial of packets. A packet classifier must compare header

fields of every incoming packet against a set of rules in order to

assign a flow identifier that is applied insecurity policies
8,9,10

.

A rule must specify a set of headers and the policy to be in use.

We may define formally a rule set as:

Definition: A Rule Space is a collection of rules, specified as a

table (flat data base) with, Columns as RuleID, ‘D’ header field

specification as H1, H2… Hd, and an Action column. Each

record (Row) specifies a rule. Number D would be the

Dimension of the rule space.

Process of classification requires, applying the rules from the

top. Attributes of the packet to be classified are matched with

values in the Header columns, and if successful the Action

becomes applicable.

For example, a typical Iptables rule may specify: A INPUT -p

tcp --dport 22 -j ACCEPT

Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)

 International Science Congress Association

This rule is to be interpreted as “a TCP packet is to be accepted

if the destination port is equal to 22 “. If no match is found the

next rule in the table is to be tested. In general the process

continues sequentially till a match is found.

approach would be a brute force method and the complexity will

be the worst.

If n1, n2… nk are the possible distinct values columns can take

then the complete Rule space will containrows in all.

N = (n1 n2 …. nD) =π(ni)

Here the operator π stands for the product. Here we have every

possible value of this would mean any linear search would

require complexity of O (N), which is not desirable. Hence

there has been a need for design of better algorithms, and this

has been a topic of interest among researchers. For H1 = source

IPV4, H2 = destination IPV4, H3= Source Port No, H4=

destination Port No and H5 = 4 possible choices for protocol, N

would amount to, 2
32

x 2
32

 x 2
16

x2
16

 x 2

combinations to search from. In practice all possible

which a header may take are not present in the rule base.

Background: Algorithms for packet classification, found in

literature, are of four types. Typification is according to their

basic design and the process of classification adopted

four types are: The Exhaustive Search: brute force method and

obviously is the most inefficient. Decision

construction decision tree are followed by enhanced searches.

Decomposition: decompose the multiple fi

instances of single field searches, perform independent searches

on each packet field, and then combine the resul

partition the filter set according to the number of specif

in the filters, probe the partitions or a subset of the partitions

using simple exact match searches.

When alternatives are designed testing becomes an issue.

Performance metrics for testing such algorithms would include:

{Search speed, Storage requirements, Fast updates, Scalability,

Flexibility}.

A classification algorithm should support general rules,

including prefixes, range, exact value and wildcards. Providing

better data structures to Rule Bases, assigning

to avoid conflicting and multiple matches, and

the Rule Base, have been some of the common techniques used

by various researchers to improve the algorithms

example of decision tree-based packet classification algorithm.

It takes the geometric view of the packet classification

Since it forms the basis for our new algorithm, we discuss these

in brief in the next step.

HiCuts: Gupta and McKeown introduced a seminal technique

called Hierarchical Intelligent Cuttings (HiCuts)

the rule set defines a d-dimensional rectangle in d

space, where d is the number of fields in the rule. The algorithm

preprocesses the rule set to build a decision tree with leaves

International Science Congress Association

This rule is to be interpreted as “a TCP packet is to be accepted

t is equal to 22 “. If no match is found the

next rule in the table is to be tested. In general the process

continues sequentially till a match is found. Of course this

approach would be a brute force method and the complexity will

n2… nk are the possible distinct values columns can take

then the complete Rule space will containrows in all.

stands for the product. Here we have every

possible value of this would mean any linear search would

require complexity of O (N), which is not desirable. Hence

there has been a need for design of better algorithms, and this

among researchers. For H1 = source

IPV4, H2 = destination IPV4, H3= Source Port No, H4=

destination Port No and H5 = 4 possible choices for protocol, N

x 2
2
= 2

98
~ 88K

In practice all possible values

which a header may take are not present in the rule base.

Algorithms for packet classification, found in

literature, are of four types. Typification is according to their

cation adopted
11

. The

The Exhaustive Search: brute force method and

obviously is the most inefficient. Decision Tree: prior

construction decision tree are followed by enhanced searches.

field searches into

eld searches, perform independent searches

eld, and then combine the results. Tuple Space:

ccording to the number of specified bits

subset of the partitions

When alternatives are designed testing becomes an issue.

Performance metrics for testing such algorithms would include:

{Search speed, Storage requirements, Fast updates, Scalability,

cation algorithm should support general rules,

xes, range, exact value and wildcards. Providing

to Rule Bases, assigning priorities to rules

to avoid conflicting and multiple matches, and pre processing

the Rule Base, have been some of the common techniques used

by various researchers to improve the algorithms
11

. HiCuts is an

based packet classification algorithm.

It takes the geometric view of the packet classification problem.

Since it forms the basis for our new algorithm, we discuss these

Gupta and McKeown introduced a seminal technique

called Hierarchical Intelligent Cuttings (HiCuts)
8
. Each rule in

sional rectangle in d-dimensional

elds in the rule. The algorithm

preprocesses the rule set to build a decision tree with leaves

containing a subset of rules with number of rules bound by a

prescribed threshold. Packet header

decision tree until a leaf is reached, i.e. a subset is identified for

further processing. The rules from the leaf subsets are then

linearly searched for a match.

A simple illustrative example
1
: Figure1 has a Rule set of

rules {R1, R2, R3, R4, R5} represented in a two dimensional

space. Here N = 5, D = 2. The illustration assumes a threshold

of t=2, which is the maximum number of rules a subset at leaf

node can contain.

Figure-

The rule set has two fields, each re

and 5 rules are shown geometrically

Figure-

A geometric view of a tree constructed according to cutting

of the rule set

The root node covers all portions of the d dimensional space. At

the top level, whole space is cut along t

to generate 4 equal sized sub-regions. One can see from

that this has resulted in to two leaf nodes, since they have rules

less than or equal to t. In the next step, two of the remaining

sub-regions are chosen to cut further. The left most node has a

horizontal cut, whereas the other one has a vertical cut again (x

axis). At the first level there were four giving us two leaf nodes,

and two nodes which required further cuts. When the second

level cut is implemented all the subsets have rules less than t,

meeting the threshold requirement.

node only if the corresponding subset has rules more than the

threshold (t).

HiCuts utilizes four heuristics for optimizing the tree. The

two, at each node select the appropriate dimension to cut and the

number of cuts. The last two, reduce the storage requirement

and eliminate redundancy in the tree.

_______________________ ISSN 2277-2502

 Res. J. Recent Sci.

 32

containing a subset of rules with number of rules bound by a

ader fields must traverse the

decision tree until a leaf is reached, i.e. a subset is identified for

further processing. The rules from the leaf subsets are then

Figure1 has a Rule set of five

rules {R1, R2, R3, R4, R5} represented in a two dimensional

space. Here N = 5, D = 2. The illustration assumes a threshold

of t=2, which is the maximum number of rules a subset at leaf

-1

fields, each rectangle represents a rule

and 5 rules are shown geometrically

-2

A geometric view of a tree constructed according to cutting

of the rule set

The root node covers all portions of the d dimensional space. At

the top level, whole space is cut along the x-axis (vertical cuts)

regions. One can see from figure 2

that this has resulted in to two leaf nodes, since they have rules

less than or equal to t. In the next step, two of the remaining

ther. The left most node has a

horizontal cut, whereas the other one has a vertical cut again (x-

axis). At the first level there were four giving us two leaf nodes,

and two nodes which required further cuts. When the second

e subsets have rules less than t,

requirement. A cut is implemented at a

the corresponding subset has rules more than the

HiCuts utilizes four heuristics for optimizing the tree. The first

node select the appropriate dimension to cut and the

number of cuts. The last two, reduce the storage requirement

and eliminate redundancy in the tree.

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 2(8), 31-39, August (2013) Res. J. Recent Sci.

 International Science Congress Association 33

Issues with HiCuts are that a larger number of cuts at a node

reduce the tree depth, but may increase rule replication and also

the number of children, which may not achieve good rule

separation. The second heuristic attempts to maximize the

number of cuts, and hence minimize the depth, while limiting

the total number of rules at all the nodal children with a factor,

called space factor. The redundant sibling nodes which share an

identical set of rules are the third heuristic target. This one

merges such siblings into one node. Another kind of redundancy

exists when a higher-priority rule overlaps a lower-priority rule

completely within a node’s subspace. In which case, no packet

would ever match the lower-priority rule which can be removed,

as done by the fourth heuristic
12

.

The HiCuts has specifications such as scalability, low memory

consumption and reasonable speed, to make it one of the most

efficient packet classification algorithms. But choosing suitable

point for making cut in the intended dimension is what that the

algorithm designers haven’t worked on it
9
.

New Algorithm

Choosing suitable point for making cut, in HiCuts algorithms

still seems to be a problem that algorithm designers haven’t

worked sufficiently on it
9
. Our algorithm adds some

modifications and improvements on the HiCuts algorithm,

developed by Gupta and McKeown.Consider the following

definitions:

Definition: Let wc(H) be the count of wild card entries in the

column H in the whole of the rule set.

Definition: Let gd(H) be the geometric distance associated with

column H in the whole of the rule set.

We make use of these values associated with every field in the

rule set to define appropriate heuristics for the purpose of

selecting the dimensions for the cuts. We follow these guide

lines and principles: i. Dimension Selection: Select the two

fields Ha, Hb which have the least wc() values, as the two

selected dimensions or alternatively we select Ha, Hb which

have least gd() values. ii. Number of cuts and Bucket size:

Compute the number of cuts as the number of cuts, and the

bucket size threshold as: NC1 = [20 + (N/1000)] = Number of

cuts, B = [N/ (20 + (N/1000))] = Bucket size (The threshold).

Here N = Total Number of rules, in the complete rule set, iii.

Separate those rules in the same chosen field as cut dimension

which have wildcard value and shift them to the bucket and

reject their use for making the decision tree. iv. Building index

tables to facilitate search within: Build an index table for each

bucket. v. The number of cuts has to be decided at the first time

cutting and also the bucket size threshold of the algorithm has to

be identified, with the purpose of trying to avoid splitting of

rules while cutting. vi. Recursion: The best dimension for next

cut level is identified after the first cut, again using the same

principles. vii. New algorithm has two separate levels, pre-

processing level (tree construction and making index table) and

search level. viii. Use the Link list data structure at the input

stage and work on large rule sets.

The new algorithm provides a full description of the chief data

structures and tunable parameters. We explain details that

describe the preprocessing algorithm and the search process and

provide the source code that permits the actual implementation.

Packet classification by Decision Tree Algorithm is to construct

a decision tree where the leaves of the tree contain rules or

subsets of rules. In order to perform a search using a decision

tree, one should construct a search key from the packet header

fields and traverse the decision tree by using individual bits or

subsets of bits from the search key. The search continues until

reaching a leaf node storing the best matching rule. A node

becomes a leaf of the tree when it has few threshold rules.

To build a decision tree data structure, the algorithm carefully

preprocessesthe rules. The decision tree is checked for a leaf

node every time a packet arrives, as it stores small set of rules

and when the search tree is constructed the choice about the

shape and depth of the decision tree and local decision are

made. As far as possible minimum repetition of rules inside the

bucketsis adhered to by the preprocessing algorithm that uses a

heuristic for distributing rules inside a bucket.

It’s shown how to classify rules in figure 3, 4, 5, and 6, in this

example rules onlyhave two fields (source Ip address and

destination Ip address), each field has 4 bits only.

Priority Source Add. Destination Add.

R1 1010 *

R2 1100 1010

R3 0101 1001

R4 * 10*

R5 111* 11*

R6 001* 1100

R7 * 00*

R8 0* 10*

R9 0110 011*

R10 1* 11*

Figure-3

In this example rules are shown in priority that, have two

fields (source Ip address and destination Ip address), each

field only made of 4 bits

Optimize the decision tree: The decision tree has been

constructed by new algorithm. Now, to optimize the decision

tree will do according existent methods
8,9

: Eliminating the

empty nodes, merging the nodes that are associated with the

same set of rules, in case the region covered by the rules, is

smaller than the overall size of the region governing the node,

one shrinks the region associated with the node to minimum

cover, and if the same rule repeated in all nodes in the same

level, then separate that rule and make a bucket of that for use at

the time of search figure 6. Set the default action for those entry

packets that do not match with any bucket. All the rules in all

Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)

 International Science Congress Association

the buckets should be sorted by priority.

processing ends with tree construction and bucket making of

rules, figure 7.

Figure-4

Each rule has two fields, each rectangle represents a rule

and 10 rules are shown in geometrically view

Figure-5

Cutting the geometric view of rule set and decompose

rule set space into small rules buckets

Figure-6

Tree is constructed according cutting the geometric view of

rule set

International Science Congress Association

 First step of pre

construction and bucket making of

fields, each rectangle represents a rule

and 10 rules are shown in geometrically view

Cutting the geometric view of rule set and decompose the

rule set space into small rules buckets

Tree is constructed according cutting the geometric view of

Figure-

Tree construction and bucket making of rules after

optimization

Index table making: For the field that is chosen for

dimension in each bucket will make an index table. The

framework will contain two stages: an index table and rule

buckets.

Use the same field of the input packet to search in the index

table. If the specific field matches, the matching fi

selected out of the set in the bucket via linear search (using

smaller set of rules). So, ends the preprocessing level and

partitioning rules.

All incoming packets need to check at the fields selected during

preprocessing. The decision tree traverses to

that cover the incoming packet. There is priority sorting of all

rules. When first match index is found a packet will traverse all

regions of possible belonging. The packet will check the all

header fields of governing rules linearly. The mo

packet is picked up via those that match completely. So the final

action (Accept/Deny) will be taken for that incoming packet and

the search will end.

It supports incremental update but in case of significant

decreasing performance it needs reconstruction. Updating will

work in the same manner as the search algorithm. For firewalls

a very slow update rate would suffice and entries can be added

manually or infrequently.

The Briefed Preprocessing Algorithm:

Read rules and create a link list to store them, ii. Find the cut

dimension by using any of 2 heuristics (any dimension that has

the smallest geometric length/ any dimension that has the

smallest number of wildcards), iii. Calculate the number of cuts

by using of (NC= [20+(Number of rules/1000)]) and Calculate

the Threshold T= [(Number of rules)/NC], iv. Separate those

rules that has wildcard value in the same chosen field as cut

dimension in the bucket, v. Construct the tree, For i=1 to NC do,

Create buckets (nodes), Assign the rules that covered by buckets

(nodes) region , If the number of rules in bucket > Threshold,

Split buckets(nodes), Create the index table for rules in buckets,

Optimize and compress the tree, END.

_______________________ ISSN 2277-2502

 Res. J. Recent Sci.

 34

-7

Tree construction and bucket making of rules after

optimization

For the field that is chosen for cut

dimension in each bucket will make an index table. The

framework will contain two stages: an index table and rule

Use the same field of the input packet to search in the index

ic field matches, the matching filter will be

selected out of the set in the bucket via linear search (using

So, ends the preprocessing level and

All incoming packets need to check at the fields selected during

preprocessing. The decision tree traverses to find the buckets

that cover the incoming packet. There is priority sorting of all

rules. When first match index is found a packet will traverse all

regions of possible belonging. The packet will check the all

header fields of governing rules linearly. The most prioritized

packet is picked up via those that match completely. So the final

action (Accept/Deny) will be taken for that incoming packet and

It supports incremental update but in case of significant

reconstruction. Updating will

work in the same manner as the search algorithm. For firewalls

a very slow update rate would suffice and entries can be added

The Briefed Preprocessing Algorithm: Preprocessing part: i.

nd create a link list to store them, ii. Find the cut

dimension by using any of 2 heuristics (any dimension that has

the smallest geometric length/ any dimension that has the

smallest number of wildcards), iii. Calculate the number of cuts

= [20+(Number of rules/1000)]) and Calculate

the Threshold T= [(Number of rules)/NC], iv. Separate those

rules that has wildcard value in the same chosen field as cut

dimension in the bucket, v. Construct the tree, For i=1 to NC do,

Assign the rules that covered by buckets

(nodes) region , If the number of rules in bucket > Threshold,

Split buckets(nodes), Create the index table for rules in buckets,

Optimize and compress the tree, END.

Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)

 International Science Congress Association

The Briefed Search Algorithm: i. Use Search pa

Packets, For each Packet: Find the buckets that cover the packet,

Search in the related index table of those buckets, Find the

specific matched rules, Select the higher priority one as a target,

Act as its action, iii. End

Experimental Methodology

We have implemented the common linear algorithm (L) and the

current algorithms which we call NewHicut2D and

NewHicut3D in language C, (GCC 4.4). The codes were

compiled with the Code::Blocks 10.05, which is a full

IDE all on an Intel Pentium processor 2.00 GHz with RAM 2.00

GB, 32-bit OS, running Microsoft Windows 7 Ultimate and the

Oracle VM Virtual Box, so virtual environment were used for

all tests. The plan of the simulated experimented was as shown

in figure 8.

Figure-8

Simulated experimented methodology model

The implementation algorithms constituted of:

 3 Types of packet sets generated: Namely Random

 Headers constituting the rules: {Source IP and Destination IP (Exact/prefix),

 Source Port and Destination Port (Exact value, any, ranges) and

 Protocol (TCP, UDP, ICMP, ANY)}

AndActions: (Accept; Deny, Log,

 Algorithms implemented: L

 Tree2D

 Tree3D

The observation recorded constituted of:

1. The Packet Classification Time:

2. PPS (Number of Packet Per Second Classification)

3. Number of Search till packet classification done

4. The Preprocessing Time/Tree Construction Time:

5. Other parameters were:The number of buckets (leaves)/Number of Cuts,

6. The number of rules 100 … 100000, and varied threshold sizes.

7. Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the

statistical software SPSS analyzed it.

International Science Congress Association

Use Search part: Read

Packets, For each Packet: Find the buckets that cover the packet,

Search in the related index table of those buckets, Find the

specific matched rules, Select the higher priority one as a target,

We have implemented the common linear algorithm (L) and the

current algorithms which we call NewHicut2D and

language C, (GCC 4.4). The codes were

compiled with the Code::Blocks 10.05, which is a full-featured

entium processor 2.00 GHz with RAM 2.00

bit OS, running Microsoft Windows 7 Ultimate and the

Oracle VM Virtual Box, so virtual environment were used for

The plan of the simulated experimented was as shown

Simulated experimented methodology model

Experimental Results

By comparing the linear with the new

analysis and graphs, it was possible to prove the proposed

algorithm based on decision tree makes packet classification

fast. Search performance is evaluated by running through it

large number of random packets that obey the weight

specifications. We used worst case scenario to do the best

evaluation.

Note that our reference implementations are only for the

purpose of simulation and evaluation; thus, the source code is

not optimized for software. The ambiguity in algorithm details

makes the algorithm evaluation and comparison a bit difficult.

In our implementation, we allow users to freely configure the

parameters. To compare the algorithms under a particular rule

set, we choose the configurations that lead to the best overall

performance.

Analysis Data collection: The statistical package SPSS was

used for Normality test (Kolmogorov

T Test. It is duly cautioned that our models show results of

average case performance.

Kolmogorov–Smirnov test is testing data for normality of the

distribution. It shows our samples are standardized by

comparison with a standard normal distribution. The significant

score is greater than 0.05, then the data significantly deviate

from a normal, so our data is normal as showed in table 1. So

according to the Normal data, one can decide about which

statistical tests need to be done.

thms constituted of:

Namely RandomSet / Controlled number of repeats/ worst case scenario.

Headers constituting the rules: {Source IP and Destination IP (Exact/prefix),

Source Port and Destination Port (Exact value, any, ranges) and

Protocol (TCP, UDP, ICMP, ANY)}

AndActions: (Accept; Deny, Log, Forward, Nothing)

 (Common linear Algorithm)

Tree2D (NewHiCuts2D or DimCut2D)

Tree3D (NewHiCuts3D or DimCut3D)

 LPC,Tree2DPC,Tree3DPC

Number of Packet Per Second Classification)LPPS,Tree2DPPS,Tree3DPPS

Number of Search till packet classification done LSearch,Tree2DSearch,Tree3DSearch

The Preprocessing Time/Tree Construction Time: Tree2DSearch,Tree3DSearch

Other parameters were:The number of buckets (leaves)/Number of Cuts, Depth of the tree structure,

The number of rules 100 … 100000, and varied threshold sizes.

Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the

statistical software SPSS analyzed it.

_______________________ ISSN 2277-2502

 Res. J. Recent Sci.

 35

By comparing the linear with the new algorithm, and using data

analysis and graphs, it was possible to prove the proposed

algorithm based on decision tree makes packet classification

Search performance is evaluated by running through it

large number of random packets that obey the weight

specifications. We used worst case scenario to do the best

Note that our reference implementations are only for the

and evaluation; thus, the source code is

not optimized for software. The ambiguity in algorithm details

makes the algorithm evaluation and comparison a bit difficult.

In our implementation, we allow users to freely configure the

algorithms under a particular rule

set, we choose the configurations that lead to the best overall

The statistical package SPSS was

used for Normality test (Kolmogorov–Smirnov), Paired sample

utioned that our models show results of

Smirnov test is testing data for normality of the

distribution. It shows our samples are standardized by

comparison with a standard normal distribution. The significant

greater than 0.05, then the data significantly deviate

from a normal, so our data is normal as showed in table 1. So

according to the Normal data, one can decide about which

Set / Controlled number of repeats/ worst case scenario.

structure, Threshold/Bucket size

Every test is repeated 3 times to arrive at the average amount in the final result. Then the data is collected and the

Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)

 International Science Congress Association

The t-test is a statistical method that compares the significant

difference between the means of two groups of data. The

dependent sample t-test (paired sample T Test) enables us to

compare packet classification time, number of

second, search number between linear and tree attempts. In this

test as the significant score is 0.000 (which is less than 0.05) as

showed in table 2; therefore there is a significant difference

between the means of observed values from L (linear) and

Tree2D (NewHighCuts2D) and Tree3D (NewHighCuts3D).

Mean times show that times are the least for Tree3D algorithms

(table 1).

Figures (Graphs): In all figures (graph) the L means linear

search algorithm, the 2DTree means new algorithm by using

two fields of rules to construct tree and the 3D

new algorithm by using three fields of rules to construct tree and

the incoming packets are fixed to 10000 numbers at worst case

condition that means, force the incoming packets to trace till the

end of tree, by setting the Protocol field to X value so the

incoming packet doesn’t match with any of the rules.

Three of the following figures (graphs) show dependency of PC

time (figure 9), PPS (figure 10) and search times (figure 11)

respectively on increasing number of rules (X

rules repeating once in the rule set and 10% rules repeating

twice in the rule set. In all cases the Number of cuts is set as [20

+ (R/1000)] and the Bucket size threshold is set as [R/ Number

of cuts].

We see that, as the rules number increases, PC time required

increases, Packet per Second processing reduces (quickly,the Y

axis is on log scale) and vary widely across the tree algorithms.

In case of Tree algorithms’ number of Packet per Second

processing seem to be stabilizing as rulesincreases. However

the newer algorithms seem to be more efficient than the linear

one. Search time is far lower in case the proposed algorithms

compared linear algorithm as can be seen from figure 11.

Shows the data significantly deviate from a normal distribution
One-Sample

Kolmogorov-

Smirnov

Rules LPC Tree2D.PC

N 13 13 13

Normal

Parameters Mean

Std. Deviation

43923.08 49838.587 482.88492

33752.683 44356.33781 347.514837

Kolmogorov-

Smirnov Z
.524 .632 .523

Asymp. Sig. (2-

tailed)
.946 .819 .947

International Science Congress Association

test is a statistical method that compares the significant

difference between the means of two groups of data. The

aired sample T Test) enables us to

compare packet classification time, number of packet per

ree attempts. In this

test as the significant score is 0.000 (which is less than 0.05) as

showed in table 2; therefore there is a significant difference

of observed values from L (linear) and

ee2D (NewHighCuts2D) and Tree3D (NewHighCuts3D).

Mean times show that times are the least for Tree3D algorithms

the L means linear

search algorithm, the 2DTree means new algorithm by using

rules to construct tree and the 3D Tree means the

new algorithm by using three fields of rules to construct tree and

the incoming packets are fixed to 10000 numbers at worst case

condition that means, force the incoming packets to trace till the

ee, by setting the Protocol field to X value so the

incoming packet doesn’t match with any of the rules.

show dependency of PC

earch times (figure 11)

g number of rules (X- axis), with 20 %

rules repeating once in the rule set and 10% rules repeating

twice in the rule set. In all cases the Number of cuts is set as [20

hreshold is set as [R/ Number

, as the rules number increases, PC time required

increases, Packet per Second processing reduces (quickly,the Y

axis is on log scale) and vary widely across the tree algorithms.

In case of Tree algorithms’ number of Packet per Second

stabilizing as rulesincreases. However

the newer algorithms seem to be more efficient than the linear

one. Search time is far lower in case the proposed algorithms

compared linear algorithm as can be seen from figure 11.

Figure-

A comparison between the linear and the Non Linear (2D,

3D) algorithm, as we increase rules to measure the packet

classification time (micro second)

Figure-10

A comparison between the linear and the Non Linear (2D,

3D) algorithm, as we increase rules to measure the number

of packet per second processing

Table-1

Shows the data significantly deviate from a normal distribution

Tree3D.PC LPPS
Tree

2.DPP
Tree3.DPPS LSearch

13 13 13 13 13

364.90423 12771.92 57438.62 73103.46 439230769.23

271.312217 34797.713 72949.864 91582.243 337526827.044

.656 1.546 .991 .922 .524

.783 .017 .280 .363 .946

_______________________ ISSN 2277-2502

 Res. J. Recent Sci.

 36

-9

the linear and the Non Linear (2D,

3D) algorithm, as we increase rules to measure the packet

classification time (micro second)

10

A comparison between the linear and the Non Linear (2D,

3D) algorithm, as we increase rules to measure the number

of packet per second processing

Tree2.DSearch Tree3.DSearch

13 13

32632028.69 30242754.00

23576611.137 22539806.842

.497 .505

.966 .961

Research Journal of Recent Sciences _______

Vol. 2(8), 31-39, August (2013)

 International Science Congress Association

Shows significant difference between the means of the linear and Tree

Paired Samples Correlations

Pair 1 L.PC & Tree2D.PC

Pair 2 L.PC & Tree3D.PC

Pair 3 L.PPS & Tree2D.PPS

Pair 4 L.PPS & Tree3D.PPS

Pair 5 L.Search& Tree2D.Search

Pair 6 L.Search& Tree3D.Search

Figure-11

A comparison between the linear and the Non Linear (2D,

3D) algorithm as we increase rules to measure the number

of search times

Figure-12

A comparison between the different numbers of cuts for

3DTree algorithm as we increase rules to measure the

number of packet per second processing

With incoming packets (fixed to 10000 numbers) at worst case

condition and varying number cuts the behavior found is shown

in figure 13. The Y axis shows the number of

processed in log scale. Line graphs correspond to NC =5, 10, 2,

30, 50,100 and the Bucket size threshold is set as (R/ Number of

cuts).In contrast, points that match with the NC = [20 +

International Science Congress Association

Table-2

Shows significant difference between the means of the linear and Tree attempts

Paired Samples Correlations N Correlation

13 .992

13 .998

13 .907

13 .931

13 .999

13 1.000

A comparison between the linear and the Non Linear (2D,

3D) algorithm as we increase rules to measure the number

numbers of cuts for

3DTree algorithm as we increase rules to measure the

number of packet per second processing

With incoming packets (fixed to 10000 numbers) at worst case

condition and varying number cuts the behavior found is shown

umber of packet per Second

Line graphs correspond to NC =5, 10, 2,

hreshold is set as (R/ Number of

In contrast, points that match with the NC = [20 +

(R/1000)], almost shows higher number of Packet per Second

processing across increases in rules. The Figure 12, shows set

NC to [20 + (R/1000)], gives us better results.

Figure-13

A comparison between the Non Linear (2D, 3D) algorithm

as we increase rules to measure the

tree construction time

The preprocessing time or tree construction time (f

shows that in case of the new algorithms preprocessing time/tree

construction time are reasonable. In addition to the number of

cuts, the dimension to cut at each internal decision tree node is

also critical to the algorithm performance. A larger bucket size

can help to reduce the size and depth of a decision tree, but it

can induce a longer linear search time, so smaller bucket size

has the counter-effects. By experiments we could determine the

appropriate bucket size for the best tradeoff of storage and

throughput. Generally, a larger bucket size means a worse

search processing but this does not always hold.

The preprocessing time or the decision tr

increases as the number of rules grows. Smaller bucket size

requires significantly longer time to process. During

experiments we found that the algorithm consistently

demonstrates better performance and scalability on the worst

case type rule sets with 20% of rules are repeated once and 10%

of them are repeated twice, than on the other types of rule sets.

The decision tree algorithm supports incremental updates to

some extent. To insert (or remove) a rule, we can just walk the

decision tree similar to the search process using the rule

specification. However, since the rules may overlap, the process

requires updating on all the affected ones. Moreover, such

_______________________ ISSN 2277-2502

 Res. J. Recent Sci.

 37

attempts

Correlation Sig.

 .000

 .000

 .000

 .000

 .000

1.000 .000

her number of Packet per Second

processing across increases in rules. The Figure 12, shows set

NC to [20 + (R/1000)], gives us better results.

13

A comparison between the Non Linear (2D, 3D) algorithm

as we increase rules to measure the preprocessing time or

tree construction time

The preprocessing time or tree construction time (figure 13),

shows that in case of the new algorithms preprocessing time/tree

construction time are reasonable. In addition to the number of

to cut at each internal decision tree node is

also critical to the algorithm performance. A larger bucket size

can help to reduce the size and depth of a decision tree, but it

can induce a longer linear search time, so smaller bucket size

By experiments we could determine the

appropriate bucket size for the best tradeoff of storage and

bucket size means a worse

search processing but this does not always hold.

The preprocessing time or the decision tree construction

increases as the number of rules grows. Smaller bucket size

requires significantly longer time to process. During

experiments we found that the algorithm consistently

demonstrates better performance and scalability on the worst

le sets with 20% of rules are repeated once and 10%

of them are repeated twice, than on the other types of rule sets.

The decision tree algorithm supports incremental updates to

some extent. To insert (or remove) a rule, we can just walk the

similar to the search process using the rule

specification. However, since the rules may overlap, the process

requires updating on all the affected ones. Moreover, such

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 2(8), 31-39, August (2013) Res. J. Recent Sci.

 International Science Congress Association 38

updates lead to a suboptimal decision tree which deteriorates

performance. The algorithm implementers need to evaluate the

impact of the preprocessing and incremental update cost for

their particular applications.

The overall evaluation results are consistent with our

expectations. Although the decision tree-based algorithm allows

a nice tradeoff between storage and throughput, but the overall

performance is not very promising. More study need to be done,

at least, to find more systematic ways to fine-tune the

configurable parameters, better adaptive decision-tree

construction procedures and rule set structure. All the evaluation

results should be normalized in a directly comparable way. In

different applications, some criteria may be more important than

others, but the evaluation should provide information and let

readers make their own judgments. Because packet

classification algorithms are mostly based on heuristics,

different rule sets with different structures and sizes tend to give

very different results.

Related Work

Packet classification continues to be an important challenge in

network processing
1,4,6,13,15-17

. An excellent survey on Packet

Classification Algorithms can be found in the survey and

taxonomy of packet classification techniques paper
11

.

Rule set intersecting is another technique, the key theme being

that a partial rule match is easier than a full rule match, all at

once. The packet header can be split into substring and matched

with a subset of rules whose intersection will give rule to match

the entire packet header. The Bit Vector (BV) algorithm and the

aggregated bit vector (ABV) algorithm, represent the subset of

rules for each partial match by using bit vectors
7,14

. Different

methods can be used for partial header lookup. A direct lookup

table can provide the fastest method even if it consumes more

storage. Binary search and longest prefix matchingare

considered as well-established single field look up

techniques
18,19,20,21

.

As has been already discussed in earlier part of our paper packet

classification viewed geometrically uses idea on the

construction of data structures and representation of rules. The

preprocessing of rule sets uses the strategy of cutting or

projecting of the multidimensional space. The basic strategy of

“divide and conquer” is used, as the initial rule set is too large

and cannot be handled under limited storage or time. The rule

set is partitioned and regrouped, so that a packet can quickly

identify a reduced rule set that includes the matching rule.

Woo’s modular packet classification, Multidimensional Cuttings

(HyperCuts), and Hierarchical Intelligent Cuttings (HiCuts)use

this approach in algorithms
4, 8, 9

. On smaller subsets parallel look

ups are possible speeding up the classifications significantly
20,21

.

Every technique possesses some limitation. To achieve good

performance the algorithm has to be designed to combine all

approaches, their best characteristics and also utilize well the

time-space tradeoff.

Conclusion

An algorithm has been proposed, based on Recursive

Dimensional Cutting (DimCut), with a decision tree structure.

Proper implementation of the algorithm can help high

performance packet classification to enable the routers, firewalls

and security challenges in high-speed environments.

We tried to search for characteristics of real classifiers that can

be exploited in pursuit of algorithms that are “fast enough” and

use “not too much” space. We implemented the new algorithm

on top of HiCuts by new heuristics and evaluated the proposed

algorithm by measuring the packet classification Time, the

number of packet per second processing, the search count, the

Preprocessing Time/Tree Construction Time, the number of

buckets (leaves), depth of the tree structure and Threshold. All

of these have to be explicit constructs and search performance is

evaluated by running through it large number of random packets

that obey the weight specifications.

The proposed algorithm was analyzed for the different tradeoffs

between the bucket size, number of cuts, number of rules, and

number of levels. The SPSS statistical software analyses data

while the Normality test that is done by Kolmogorov–Smirnov

and the Difference test that is the Paired sample T Test, to check

the final results. According to the results we draw several

graphs for better representation.

Finally, we note that DimCut can easily be implemented in

hardware at line speeds using a pipeline and on-chip SRAM. As

the tree structure constructed by DimCut has levels no greater

than 5, these needs only 5 pipeline levels, which is well within

current hardware limits. We believe that DimCut can be a viable

packet classification algorithm that gives the deterministic

performance with flexibility for system designers to tradeoff the

components. We believe this project will benefit the research

and design community as a whole. Although, the decision tree

algorithms allow a nice tradeoff between the storage and

throughput, but the overall performance is still not very

promising. More study need to be done, at least, to find more

systematic ways of fine-tuning the configurable parameters,

better adaptive decision-tree construction procedures and rule

set structure.

References

1. Song H. and Turner J., Toward Advocacy-Free Evaluation

of Packet Classification Algorithms, in IEEE Transactions

on Computers, 60, (2011)

2. Bauer M., Paranoidpenguin: Using Iptables for local

security, in Linux Journal, Available at

http://www.linuxjournal.com/article/609, August (2002)

3. Napier D., IPTables/NetFilter – Linux’s next generation

stateful packet filter, in Sys Admin - Security: The Journal

Research Journal of Recent Sciences __ ISSN 2277-2502

Vol. 2(8), 31-39, August (2013) Res. J. Recent Sci.

 International Science Congress Association 39

for UNIX Systems Administrators, 10(12), 8, 10, 12, 14, 16,

(2001)

4. Woo T., A Modular Approach to Packet Classification:

Algorithms and Results, in Proceedings of INFOCOM

2000, Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, 3, 26-30 (2000)

5. Decasper D., Dittia Z., Pantlkar G. and Plattner Scottberg

B., Router plugins: A software architecture for next

generation routers, in Proceedings of ACM Sigcomm, 191-

202, Vancouver, Canada, (1998)

6. Srinivasan V., Varghese G., Suri S. and Waldvogel M., Fast

and scalable layer four switching, in Proceedings of ACM

Sigcomm '98 , 191-202,Vancouver, Canada, (1998)

7. Stihdis D. and Lakslunan T.V., High-speed policy-based

packet forwarding using efficient multi-dimensional range

matching, in Proceedings of ACM Sigcomm, 203-214,

Vancouver, Canada, August 31 - September 4 (1998)

8. Singh S., Baboescu F., Varghese G. and Wang J., Packet

Classification using Multidimensional Cutting, in

Proceedings of the ACM SIGCOMM ’03 Conference on

Applications, Tech., Archi., and Protocols for Computer

Communication (SIGCOMM ’03), 213 – 224 (2003)

9. Gupta P. and McKeown N., Packet Classification Using

Hierarchical Intelligent Cuttings, in Proceedings of IEEE

Symp. High Performance Interconnects (HotI), 7, (1999)

10. Vamanan B., Voskuilen G., Vijaykumar T.N., EffiCuts:

optimizing packet classification for memory and

throughput, in Proceedings of Proceedings of the ACM

SIGCOMM 2010 conference on SIGCOMM, New Delhi,

India, (2010)

11. Taylor D., Survey and Taxonomy of Packet Classification

Techniques, in Proceedings of ACM Computing Surveys

(CSUR), 37(3), 238 - 275 (2005)

12. Ahmadi M. and Wong, S., Modified Collision Packet

Classification using Counting Bloom Filter in Tuple Space,

in Proceedings of International Conference on Parallel and

Distributed Computing and Networks (PDCN 2007),

Innsbruck, Austria, (2007)

13. Gupta P. and McKeown N., Packet Classification on

Multiple Fields, in proceedings of the conference on

Applications, technologies, architectures, and protocols for

computer communication in ACM SIGCOMM ’99, 147-

160 (1999)

14. Baboescu F. and Varghese G., Scalable Packet

Classification, in Proceedings of the ACM SIGCOMM,

199–210 (2001)

15. Feldmann A. and Muthukrishnan S., Tradeoffs for Packet

Classification, in Proceedings of the IEEE INFOCOM,

Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies, 3, 1193–1202 (2000)

16. Waldvogel M., Varghese G., Turner J. and Plattner B.,

Scalable High Speed IP Routing Lookups, in Proceedings

of the ACM SIGCOMM, 25-38 (1997)

17. Srinivasan V. and Varghese G., Fast Address Lookups

Using Controlled Prefix Expansion, in Proceedings of the

ACM Trans. Computer Systems, 17, 1-40 (1999)

18. Eatherton W., Varghese G. and Dittia Z., Tree Bitmap:

Hard- ware/Software IP Lookups with Incremental

Updates, ACM SIGCOMM Computer Comm. Rev., 34(2),

97-122 (2004)

19. Song H., Turner J. and Lockwood J., Shape Shifting Tries

for Faster IP Lookup, in Proceedings of the IEEE Int’l

Conf. Network Protocols (ICNP’05), (2005)

20. Song H., Turner J. and Dharmapurikar S., Packet

Classification Using Coarse-Grained Tuple Spaces, in

Proceedings of the ACM/IEEE Symp, Architecture for

Networking and Comm., Systems (ANCS ’06), 41- 50

(2006)

21. Srinivasan V., Suri S. and Varghese G., Packet

Classification Using Tuple Space Search, in Proceedings of

the ACM SIGCOMM’99, 135-146 (1999)

