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Abstract 

The ordinary least squares (OLS) estimators are very sensitive to the presence of outliers in the data. Several robust 

methods have been suggested by researchers to cope with this problem. In this paper we propose a new redescending M- 

estimator, called Alamgir redescending M- estimator. Its performance is compared with other robust estimators and also 

with OLS using simulation studies. Real data examples have been presented to evaluate the performance of the proposed 

estimator. 
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Introduction 

It is evident from the literature that Least Squares estimates are 

extremely sensitive to outliers. Even, single badly placed outlier 

can distort the LS estimates that lead to unreliable and 

misleading results and hence will provide useful information 

about majority of the data points in the data set. To cope with 

such a situation, researchers have developed “Robust 

Regression” procedures as an improvement to the classical least 

squares estimation in the presence of outliers in the data. The 

OLS estimates are badly affected by the extreme leverage points 

having arbitrarily very large residuals
1
. 

 

Robust estimation is considered to be a possible alternative to 

classical estimation procedures to compensate for its sensitivity 

to outliers, especially, when dealing with multivariate 

contaminated datasets.  The main aim of robust estimators is to 

reduce the influence of these outliers and provide stable results. 

A major disadvantage of robust methods is that the robust 

procedures do not have rigorous statistical basis.  

 

The first step in this direction came in1887 when L1-criterion or 

Least Absolute Deviation was introduced
2,3

.For the regression 

model, 

Y X β ε= +
                (1)

 

 

The objective function for the L1-norm is based on the 

minimization of sum of absolute residuals instead of sum of 

squared residuals, that is  

����|��|
�

�	

 

 

where riis the ith residual. 

 

Another important class of robust estimators is the M-

estimator
4
. M-estimator is an extension of least squares 

procedure
5
defined as follows 

)2(min)),(()( ⇒−=∑
n

i

ii xgyf βρβ

 

The form of ρ(.) defines various forms of robust M-estimators. 

When
2)( ii rr =ρ , it becomes simple least-squares.The 

minimization of the function is done iteratively using iteratively 

reweighted least squares (IRLS or IWLS).A reasonable ( ).ρ  

should possess the following properties: i. ( ) 0
i

rρ ≥  (non-

negativity), ii. 
0)0( =ρ

, iii. ( ) ( )
i i

r rρ ρ= −  (symmetry), 

iv. ( ) ( )
i j

r rρ ρ≥ for i jr r≥  (monotonicity), v. ρ is 

continuous (ρ is differentiable). 

 

A summary of such iterative methods is given by Holland and 

Welch
6
.  

 

One of the popularly known M-estimators is the Huber 

estimator. The (.)ρ -function of Huber estimator is given by 
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and the ψ-function is defined as  
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where c is an arbitrary value known as tuning constant. For 

Huber function, a tuning constant of c =1.345 yields 95% 

efficiency on the normal distribution.  

 

It is to be noted that the Huber proposal does not downweight 

the large residuals which is a major drawback of Huber 

estimator. This drawback can be overcome by considering the 

next class of robust estimators, called as redescending M-

estimators for which the score function ( ) 0r as rψ → → ∞
. 

 

Redescending M-estimators 

Another important class of estimators is the “smoothly 

redescending” M-estimators with ψ -functions redescending to 

zero. “These estimators are constructed in order to remove clear 

outlying observations, to avoid the hard jump of elimination 

procedures and to substitute it by continuous transition of 

treating the data from fully good to fully bad”
7
. Redescending 

M-estimators are those estimators that are designed in such a 

way so that extreme outliers are completely rejected. In other 

words, an M-estimator is said to be a redescending M-estimator, 

for which the ψ -function redescends. That is, if its ψ -function 

satisfies lim��→±∞ ψ �r�� = 0. 
 

Several researchers have proposed various redescending M-

estimators
8
. Practically, all these redescending M-estimators are 

very similar computationally and yield almost similar outcomes. 

A three-part redescending function was proposed by Hampel in 

the “Princeton Robustness Study”
9
 and is defined as follows 

,

( ) ,

( ) (5)
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r r a
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where the constant a, b, c are called tuning constants satisfying 

0< � ≤ � < � < ∞.	 Hampel’s three part function has revealed 

very good performance in the Princeton study. The ( )rψ
function of Hampel estimator indicates that it is still not a very 

good one as there are sudden changes in the slope of its ( )rψ -

function. There is still a need of smoothed ( )rψ -function. The 

Hampel’s ( )rψ -function lacks the property of differentiability, 

and thus a smooth redescending ( )rψ -function would be 

desired. According to Winsor’s principle, any ( )rψ -function 

which is linear in the center, yields better efficiency in case of 

normal distribution
10

. To achieve this objective, Andrew’s sine 

function
9
 was developed with ( )rψ  function given by 

 

sin( / ) ,
( ) (6)

0 ,

c r c r
r

r

π
ψ

π

 <
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>
 

 

This function is continuous and hence differentiable. Another 

popular redescending M-estimator is Tukey Bisquare
11

 with ψ  

given by  
2 2{1 ( / ) } ,

( ) (7)
0 ,

r r c r c
r

r c
ψ

 − <
= 

>

 

 

For Tukey Biweight function, c = 4.685 gives 95% efficiency 

on normal distribution. M-estimators have a low break down 

point
12

, that is, 1/n. It shows that these estimators can be biased 

even by one outlier. The scenario totally changes if outliers are 

only in the y- direction but not in the x- direction
13,14

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1 

Andrew score function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2 

Andrew weight function 

For a comparison of the most popular robust estimators 

including, Huber’s M-estimator, Tukey’s bisquare and Hampel 
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estimator etc. through simulation study see Muthukrishnan and 

Radha
15

. They discussed some asymptotic properties of M-

estimators. They argued that while choosing the redescending 

ψ -functions, one should take care that the ψ -functions of the 

redescending M-estimator does not descend very steeply to zero 

because that may have a ruthless influence on the asymptotic 

variance. In this paper, we propose a more robust and efficient 

redescending M-estimator that does not descend very steeply 

and is compared with the existing M and redescending M-

estimators. 
 

The Proposed Estimator 

The proposed estimator, known as “Alamgir Redescending M- 

Estimator abbreviated as (ALARM)”, is based on a modified 

tangent hyperbolic (tanh) type weight function.Consider tanh 

function given by 
2

2

1
t a n h ( ) (8 )

1

r

r

e
r

e

−−
=

+
 

Replacing 2r by kr
2
to have a modified tangent hyperbolic 

function given by 
2

2

1
( ) ( 9 )

1

k r

k r

e
g r

e

−−
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where k is the normalizing constant. The derivative of this 

function is given by 
2

21 2

4
( ) , 1 (1 0 )
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 The corresponding weight function, 1( )w r  , is given by 

2

21 1 2

4
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Introduce a tuning constant parameter “C” in the above weight 

function to have 
2

2

( / )

1 ( / ) 2

4
 w (r)= (12)

(1 )

r c
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e

e
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The behavior of the weight function, 1w (r) , is described in 

figure 4. 
 

The drawback of this weight function is that it assigns rapidly 

decreasing weights to even good observations in the center of 

the data, thereby, reducing efficiency of the estimator. Tukey 

Bisquare weight function also suffers from the same problem.To 

overcome the drawback of these weight functions, we propose 

an alternative and a more efficient weight function given below 
2

2

2 ( / )

2 ( / ) 4
1

1 6
,
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Figure-3 

Graph of the W1(r), weight function 
 

The above proposed function assigns weights close to “1” to 

majority of the good observations in the data set and 

consequently slow decreasing weights to outlying observation 

as it exhibits more linearity in the middle. The leverage points 

(extreme outliers) are assigned weight zero.  

 

The weight function, given in (14), corresponds to the proposed 

new linear and slow decaying ψ -function given by  

2

2

2 ( / )

( / ) 4

16
,

 (r) (14)(1 )
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The functional relationship between ψ is given by 

( ) ( ) (15)
d

r r
dr

ψ ρ=  

Integrating out the ψ -function under the initial conditions, we 

get the corresponding ( )rρ , given by 

2

2
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2
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3

2

3
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3
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The newly proposed score function ���� satisfies the standard 

properties of an ideal score function ����. The proposed weight 

function ( ) ( ) /w r r rψ= , is as follows: 
2

2

( / ) 2

( / ) 4

( 4 )
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Where “r” denotes residual and “c” is tuning constant. 
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Robustness and efficiency are the two properties of a robust 

procedure which are inversely related. So one should choose an 

estimator with maximum resistance and the one that results in 

minimum loss of efficiency. Nobody can choose a highly robust 

estimator which is resistant to outlier at the cost of decreasing 

efficiency. There should be a compromise between these two 

properties. The proposed weight function is a symmetric 

function that assigns weights to the residuals. Figure (4-6) 

clearly shows symmetry of the function. The weight function 

ensures maximum weight (close to 1) assigned to the residuals 

corresponding to majority of the good observations. The����, 
w(r) and ( )rψ  functions of ALARM estimator are plotted in 

figure (4-6). 
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Figure-4 

Proposed Weight function 
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Figure-5 

Proposedψ -function 

 

This fact differentiates the proposed estimator from all the other 

estimators and enables the proposed estimator to be preferred 

over others in majority of its applications. Only extremely 

outlying observations (bad leverage points) receive zero 

weights. The proposed weight function is a continuous and 

differential function. The proposed estimator performs soft 

trimming. Unlike Tukey’s weight function and many more, the 

proposed weight decreases too slowly in the center and thus, 

having more linearity in the middle ensuring utilization of full 

information from good observations and less relying on extreme 

outliers. The proposedψ -function is highly linear in the center 

yielding enhanced efficiency. The proposed estimator treats the 

middle observations nearly like OLS and then redescends. For 

empirical study of the proposed estimator, we set the tuning 

constant c = 3as it gives approximately 95% efficiency at 

normal case.  

Figure-6 

Proposed objective function 

 

Computational Algorithm 

Consider the regression model given in (1). We adopt the 

following algorithm for all competing estimators being 

considered in the study. 

 

Step1: Choose initial estimates of β. We use LTS as starting 

value which is a high break down point estimator. 

Step2: Compute the residuals, 
i

r  , and also the corresponding 

weights based on the weight function from the previous 

iteration. Usually the residuals are scaled by applying some 

suitable scale estimate. In practice the variance, 
2σ , is 

unknown. A very good choice for scale estimate due to high 

degree of robustness is the Median Absolute Deviation (MAD) 

is given by 

( ) / 0.6745
i i

MAD Median r Median r= −  

Step3: Calculate new estimates of the regression coefficients by 

performing weighted least squares, that is  

( 1) 1 ( 1)ˆ ( )i i

i X W X X W Yβ − − −′ ′=  

whereW is a diagonal matrix of weights based on specified 

weight function.  

Step4: Repeat step 2- 3 until convergence or using some 

stopping criteria. In our case, we terminate the process when the 

maximum relative change is less than 0.000001. 

 

Simulation Studies 

Simulation studies are carried out to take into account various 

factors affecting the model fit and to be able to generalize the 

results to almost all types of data sets on the basis of artificially 
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generated data. Our simulation study is based on the following 

simulation design, each consisting of 3000 runs. 

 

The proposed (ALARM) estimator is compared with Huber, 

Tukey Biweight, Andrew sine, Hampel estimators and also with 

the classical OLS estimator. 

 

Consider all simulations of one estimate, 

1 2
ˆ ˆ ˆ ˆ( , , . . . , ), 1 , 3000.i i i ip i g gβ β β β= ≤ ≤ =  For 

comparison purpose, total absolute bias (TAB) and the TMSE
16

 

are computed for the estimates and are averaged over 3000 

simulations for various sample sizes and number of predictors p 

= 1, 2, 5. The total bias, TAB, is computed from all replications 

as 

1 ˆ (18)
g p

ij ij

i j

TAB
g

β β= −∑∑  

And the total MSE, denoted by TMSE, is calculated from all 

replications as 

21 ˆ( ) (19)
g p

ij ij

i j

TMSE
g

β β= −∑∑  

We generated data from various symmetric distributions of 

which two are heavy tailed distributions. Different simulation 

scenarios are as follows: 

 

Generating both X and Y independently from: i. N (0, 1). ii. 

Student t distribution, T(3), iii. Double exponential distribution 

L (0, 1). 

 

Next we consider samples containing λ = 10%, 20% and 40% 

outliers in either Y- direction or in both XY- directions. The 

contaminations are done from normal distributions with 

different values of the parameters.  

 

Results and Discussion 

Numerical (simulation): Based on the simulation scenarios, the 

simulated AB’s and TMSE’s results are presented in tables (1-

9). 

 

Efficiency and Break Down Point: Bias, efficiency and break 

down point are the three desiring properties for almost all robust 

methods. Table1 summarizes the results based on clean data 

from normal distribution. In case of simulation from Normal 

distribution, λ = 0%, OLS estimates have lowest total bias 

(simulation bias) and have smallest TMSE. ALARM estimator 

is a good competitor of the OLS in terms of total bias and 

TMSE as compared to all other estimators. None of the 

remaining estimators performs as efficiently as does the 

ALARM estimator. 

 

When data is generated from t(3) (table 2), the ALARM 

estimator yielded lowest total bias as compared to OLS and all 

other robust estimators. Hampel, Tukey and Andrew yielded on 

the average approximately the same bias. The total bias of all 

these estimators tend to decrease as the sample size increases. 

Here, Hampel, Huber, Andrew and Tukey estimators have 

almost the same TMSE and hence equally more efficient 

estimators than ALARM estimator. The performance of 

ALARM estimator improves, however, with increasing sample 

size. 

 

Table-1 

Bias and efficiency of the estimates (X from N(0, 1) and Y from N(0,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

0.008 

0.300 

0.009 

0.300 

0.009 

0.300 

0.011 

0.300 

0.011 

0.300 

0.008 

0.300 

P=2 
TAB 

TMSE 

0.003 

0.340 

0.004 

0.351 

0.005 

0.343 

0.007 

0.370 

0.007 

0.370 

0.004 

0.343 

P=5 
TAB 

TMSE 

0.005 

0.524 

0.007 

0.548 

0.006 

0.551 

0.009 

0.742 

0.008 

0.732 

0.005 

0.528 

n=50 

P=1 
TAB 

TMSE 

0.013 

0.198 

0.015 

0.206 

0.015 

0.202 

0.015 

0.210 

0.015 

0.210 

0.013 

0.199 

P=2 
TAB 

TMSE 

0.002 

0.250 

0.003 

0.259 

0.003 

0.252 

0.003 

0.263 

0.003 

0.263 

0.002 

0.251 

P=5 
TAB 

TMSE 

0.003 

0.366 

0.010 

0.386 

0.008 

0.376 

0.009 

0.371 

0.008 

0.411 

0.006 

0.367 

n=100 

P=1 
TAB 

TMSE 

0.005 

0.138 

0.006 

0.144 

0.006 

0.141 

0.006 

0.144 

0.005 

0.144 

0.005 

0.138 

P=2 
TAB 

TMSE 

0.002 

0.178 

0.004 

0.183 

0.004 

0.179 

0.004 

0.183 

0.004 

0.183 

0.003 

0.179 

P=5 
TAB 

TMSE 

0.002 

0.242 

0.004 

0.258 

0.004 

0.253 

0.004 

0.261 

0.004 

0.261 

0.003 

0.247 
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Table-2 

Bias and efficiency of the estimates (X and Y from t-distribution, t(3)) 

n P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

0.009 

(0.376) 

0.009 

(0.302) 

0.006 

(0.313) 

0.009 

(0.308) 

0.008 

(0.306) 

0.004 

(0.318) 

P=2 
TAB 

TMSE 

0.008 

0.443 

0.007 

0.364 

0.005 

0.372 

0.012 

0.384 

0.012 

0.382 

0.006 

0.385 

P=5 
TAB 

TMSE 

0.011 

0.671 

0.009 

0.507 

0.007 

0.532 

0.009 

0.660 

0.009 

0.652 

0.007 

0.540 

n=50 

P=1 
TAB 

TMSE 

0.002 

0.290 

0.002 

0.214 

0.002 

0.224 

0.003 

0.216 

0.002 

0.215 

0.001 

0.239 

P=2 
TAB 

TMSE 

0.006 

0.340 

0.009 

0.262 

0.009 

0.267 

0.009 

0.264 

0.009 

0.263 

0.009 

0.265 

P=5 
TAB 

TMSE 

0.007 

0.458 

0.004 

0.362 

0.0033 

0.371 

0.004 

0.379 

0.005 

0.373 

0.002 

0.380 

n=100 

P=1 
TAB 

TMSE 

0.007 

0.199 

0.003 

0.155 

0.003 

0.161 

0.002 

0.153 

0.002 

0.153 

0.002 

0.162 

P=2 
TAB 

TMSE 

0.004 

0.229 

0.004 

0.174 

0.004 

0.179 

0.004 

0.175 

0.004 

0.175 

0.004 

0.178 

P=5 
TAB 

TMSE 

0.005 

0.302 

0.003 

0.235 

0.002 

0.242 

0.002 

0.240 

0.002 

0.240 

0.001 

0.242 

 

Table-3 

Bias and efficiency of the estimates (X from L(0,1) and Y from L(0,1)) 

n P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

0.007 

0.339 

0.002 

0.297 

0.002 

0.308 

0.001 

0.302 

0.001 

0.301 

0.001 

0.324 

P=2 
TAB 

TMSE 

0.007 

0.411 

0.004 

0.351 

0.004 

0.367 

0.006 

0.376 

0.006 

0.372 

0.004 

0.369 

P=5 
TAB 

TMSE 

0.008 

0.566 

0.005 

0.509 

0.005 

0.534 

0.005 

0.687 

0.006 

0.677 

0.005 

0.530 

n=50 

P=1 
TAB 

TMSE 

0.006 

0.245 

0.004 

0.217 

0.004 

0.228 

0.003 

0.223 

0.003 

0.223 

0.003 

0.223 

P=2 
TAB 

TMSE 

0.012 

0.306 

0.009 

0.261 

0.009 

0.272 

0.009 

0.263 

0.009 

0.263 

0.009 

0.263 

P=5 
TAB 

TMSE 

0.007 

0.566 

0.005 

0.509 

0.007 

0.534 

0.005 

0.687 

0.006 

0.677 

0.005 

0.530 

n=100 

P=1 
TAB 

TMSE 

0.004 

0.174 

0.002 

0.150 

0.003 

0.159 

0.003 

0.152 

0.003 

0.152 

0.003 

0.159 

P=2 
TAB 

TMSE 

0.010 

0.202 

0.003 

0.174 

0.002 

0.183 

0.004 

0.175 

0.004 

0.175 

0.002 

0.174 

P=5 
TAB 

TMSE 

0.004 

0.278 

0.004 

0.237 

0.003 

0.248 

0.004 

0.241 

0.004 

0.240 

0.003 

0.240 
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Table-4 

Bias and efficiency of the estimates (90% X from N(0, 1) and 10% X from N(20,1); 90% Y from   N(0,1) and 10% Y from 

N(100,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

2.574 

4.984 

2.577 

4.988 

0.011 

0.298 

0.012 

0.306 

0.010 

0.300 

0.010 

0.295 

P=2 
TAB 

TMSE 

1.704 

3.632 

1.715 

3.698 

0.020 

0.368 

0.050 

0.382 

0.050 

0.381 

0.010 

0.366 

P=5 
TAB 

TMSE 

0.846 

2.502 

0.811 

3.001 

0.020 

0.701 

0.020 

0.800 

0.010 

0.702 

0.020 

0.700 

n=50 

P=1 
TAB 

TMSE 

3.000 

5.100 

3.001 

5.100 

0.003 

0.200 

0.003 

0.200 

0.003 

0.205 

0.003 

0.200 

P=2 
TAB 

TMSE 

2.001 

4.000 

2.000 

4.001 

0.003 

0.300 

0.004 

0.301 

0.004 

0.301 

0.003 

0.300 

P=5 
TAB 

TMSE 

0.838 

2.374 

0.801 

2.121 

0.006 

0.401 

0.006 

0.402 

0.006 

0.400 

0.005 

0.400 

n=100 

P=1 
TAB 

TMSE 

2.574 

4.984 

3.002 

4.712 

0.004 

0.151 

0.004 

0.151 

0.004 

0.154 

0.004 

0.151 

P=2 
TAB 

TMSE 

1.691 

3.533 

2.001 

4.012 

0.0060 

0.201 

0.0060 

0.201 

0.0060 

0.201 

0.0060 

0.201 

P=5 
TAB 

TMSE 

0.840 

2.293 

0.851 

2.002 

0.003 

0.274 

0.002 

0.278 

0.002 

0.278 

0.003 

0.273 

 

Table-5 

Bias and efficiency of the estimates (80% X from N(0,1), 20% X from N(20,1), 80% Y from N(0,1), 20% Y from N(100,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

2.609 

5.054 

2.618 

5.094 

0.007 

0.298 

0.008 

0.301 

0.008 

0.301 

0.006 

0.300 

P=2 
TAB 

TMSE 

1.719 

3.659 

1.721 

3.701 

0.001 

0.400 

0.001 

0.410 

0.001 

0.500 

0.001 

0.400 

P=5 
TAB 

TMSE 

0.849 

2.508 

0.843 

2.577 

0.101 

1.101 

0.101 

1.102 

0.101 

1.102 

0.101 

1.101 

n=50 

P=1 
TAB 

TMSE 

2.605 

4.989 

2.609 

5.012 

0.010 

0.200 

0.020 

0.203 

0.020 

0.203 

0.010 

0.200 

P=2 
TAB 

TMSE 

1.720 

3.596 

1.719 

3.626 

0.003 

0.331 

0.003 

0.331 

0.003 

0.332 

0.003 

0.292 

P=5 
TAB 

TMSE 

0.842 

2.386 

0.836 

2.428 

0.012 

0.492 

0.013 

0.503 

0.013 

0.503 

0.012 

0.492 

n=100 

P=1 
TAB 

TMSE 

2.609 

5.054 

2.628 

4.983 

0.004 

0.156 

0.004 

0.158 

0.004 

0.158 

0.004 

0.156 

P=2 
TAB 

TMSE 

1.719 

3.659 

1.713 

3.567 

0.005 

0.197 

0.005 

0.199 

0.005 

0.199 

0.004 

0.197 

P=5 
TAB 

TMSE 

0.849 

2.508 

0.841 

2.320 

0.003 

0.281 

0.003 

0.284 

0.003 

0.283 

0.003 

0.280 



Research Journal of Recent Sciences ______________________________________________________________ ISSN 2277-2502 

Vol. 2(8), 79-91, August (2013)                     Res. J. Recent Sci. 

 International Science Congress Association             86 

Table-6 

Bias and efficiency of the estimates (80% X from N(0, 1) and 20% from N(20,1); 80% Y fromN(0,1) and 20% Y from 

N(10,5)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

0.255 

0.549 

0.244 

0.539 

0.007 

0.310 

0.007 

0.315 

0.008 

0.315 

0.006 

0.309 

P=2 
TAB 

TMSE 

0.170 

0.629 

0.166 

0.516 

0.116 

0.489 

0.102 

0.490 

0.102 

0.489 

0.102 

0.477 

P=5 
TAB 

TMSE 

0.087 

1.037 

0.085 

0.693 

0.067 

0.655 

0.062 

0.770 

0.062 

0.760 

0.061 

0.661 

n=50 

P=1 
TAB 

TMSE 

0.250 

0.520 

0.242 

0.513 

0.209 

0.485 

0.131 

0.408 

0.137 

0.414 

0.3155 

0.434 

P=2 
TAB 

TMSE 

0.168 

0.526 

0.169 

0.449 

0.143 

0.435 

0.109 

0.401 

0.111 

0.403 

0.121 

0.401 

P=5 
TAB 

TMSE 

0.084 

0.769 

0.085 

0.526 

0.074 

0.522 

0.067 

0.499 

0.068 

0.500 

0.066 

0.500 

n=100 

P=1 
TAB 

TMSE 

0.257 

0.510 

0.250 

0.501 

0.245 

0.497 

0.170 

0.406 

0.175 

0.411 

0.169 

0.402 

P=2 
TAB 

TMSE 

0.171 

0.629 

0.170 

0.399 

0.164 

0.398 

0.137 

0.352 

0.130 

0.356 

0.131 

0.347 

P=5 
TAB 

TMSE 

0.087 

1.037 

0.083 

0.383 

0.079 

0.389 

0.072 

0.359 

0.084 

0.361 

0.067 

0.359 

 

Table-7 

Bias and efficiency of the estimates (60% X from N(0,1) and 40% from N(20,1); 60% Y from N(0,1), 40% Y from N(100,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

2.677 

5.121 

2.694 

5.161 

0.0203 

0.5232 

0.0195 

0.5237 

0.0196 

0.5237 

0.0212 

0.5246 

P=2 
TAB 

TMSE 

1.737 

3.701 

1.736 

3.727 

0.1836 

1.266 

0.1831 

1.280 

0.1832 

1.279 

0.1839 

1.265 

P=5 
TAB 

TMSE 

0.8487 

2.5346 

0.8487 

2.572 

0.7946 

2.5029 

0.7883 

2.7316 

0.7872 

2.723 

0.7944 

2.519 

n=50 

P=1 
TAB 

TMSE 

2.6663 

5.0447 

2.669 

5.0619 

0.0140 

0.2578 

0.0147 

0.2582 

0.0147 

0.2582 

0.0139 

0.2578 

P=2 
TAB 

TMSE 

1.7318 

3.6292 

1.7280 

3.6451 

0.0209 

0.5216 

0.0210 

0.5286 

0.0210 

0.5282 

0.0207 

0.5196 

P=5 
TAB 

TMSE 

0.8487 

2.5346 

0.8413 

2.4170 

0.6460 

2.1273 

0.6466 

2.1594 

0.6465 

2.1571 

0.6461 

2.1231 

n=100 

P=1 
TAB 

TMSE 

2.6612 

5.0143 

2.6792 

5.0234 

0.0018 

0.1817 

0.0018 

0.1820 

0.0018 

0.1820 

0.0018 

0.1817 

P=2 
TAB 

TMSE 

1.7265 

3.5766 

1.7332 

3.5860 

0.0040 

0.2295 

0.0042 

0.2296 

0.0042 

0.2296 

0.0040 

0.2295 

P=5 
TAB 

TMSE 

0.8467 

2.3106 

0.8452 

2.3215 

0.3626 

1.5480 

0.3626 

1.5519 

0.3626 

1.5516 

0.3624 

1.5472 
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Table-8 

Bias and efficiency of the estimates (X from N(0, 1); 80% Y from N(0,1) and 20% Y from N(100,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

10.282 

21.402 

0.235 

0.613 

0.007 

0.310 

0.008 

0.315 

0.008 

0.315 

0.006 

0.309 

P=2 
TAB 

TMSE 

6.908 

22.81 

0.170 

0.725 

0.005 

0.395 

0.006 

0.403 

0.006 

0.402 

0.005 

0.393 

P=5 
TAB 

TMSE 

3.602 

27.764 

0.145 

3.275 

0.006 

0.603 

0.006 

0.643 

0.007 

0.640 

0.006 

0.601 

n=50 

P=1 
TAB 

TMSE 

10.290 

20.864 

0.233 

0.556 

0.015 

0.225 

0.016 

0.227 

0.016 

0.227 

0.014 

0.224 

P=2 
TAB 

TMSE 

6.766 

21.785 

0.166 

0.641 

0.002 

0.285 

0.002 

0.288 

0.002 

0.288 

0.002 

0.284 

P=5 
TAB 

TMSE 

3.600 

24.246 

0.096 

0.854 

0.007 

0.422 

0.008 

0.427 

0.008 

0.426 

0.006 

0.421 

n=100 

P=1 
TAB 

TMSE 

10.132 

20.464 

0.249 

0.538 

0.004 

0.156 

0.004 

0.158 

0.004 

0.158 

0.003 

0.155 

P=2 
TAB 

TMSE 

6.767 

20.885 

0.166 

0.565 

0.004 

0.200 

0.004 

0.202 

0.004 

0.202 

0.003 

0.199 

P=5 
TAB 

TMSE 

3.378 

22.152 

0.089 

0.665 

0.004 

0.283 

0.004 

0.285 

0.004 

0.285 

0.004 

0.282 

 

Table-9 

Bias and efficiency of the estimates (X from N(0, 1); 60% Y from N(0,1) and 40% Y from N(100,1)) 

N P Estimate OLS Huber Hampel Andrew Tukey ALARM 

n=30 

 

P=1 
TAB 

TMSE 

20.092 

41.297 

2.364 

12.455 

0.005 

0.356 

0.005 

0.356 

0.005 

0.356 

0.004 

0.355 

P=2 
TAB 

TMSE 

13.660 

42.357 

3.718 

23.847 

0.005 

0.466 

0.005 

0.467 

0.005 

0.467 

0.004 

0.465 

P=5 
TAB 

TMSE 

7.178 

46.581 

5.111 

48.647 

0.008 

0.753 

0.008 

0.752 

0.008 

0.752 

0.007 

0.750 

n=50 

P=1 
TAB 

TMSE 

20.225 

40.617 

1.318 

5.583 

0.014 

0.258 

0.015 

0.258 

0.015 

0.258 

0.013 

0.257 

P=2 
TAB 

TMSE 

13.644 

41.376 

2.116 

14.146 

0.003 

0.339 

0.003 

0.339 

0.004 

0.401 

0.003 

0.339 

P=5 
TAB 

TMSE 

7.011 

43.40 

3.451 

34.80 

0.008 

0.499 

0.008 

0.499 

0.008 

0.499 

0.008 

0.499 

n=100 

P=1 
TAB 

TMSE 

20.23 

40.36 

1.092 

2.295 

0.002 

0.182 

0.002 

0.182 

0.002 

0.182 

0.001 

0.181 

P=2 
TAB 

TMSE 

13.48 

40.63 

0.850 

4.248 

0.006 

0.231 

0.006 

0.231 

0.009 

0.269 

0.005 

0.231 

P=5 
TAB 

TMSE 

6.873 

41.637 

0.905 

11.334 

0.005 

0.331 

0.005 

0.332 

0.005 

0.332 

0.004 

0.331 

 

Based on the data generated from heavy tailed Laplace 

distribution, the results in table 3 show that the performance of 

ALARM estimator gets better for increasing sample size and 

increasing p. OLS has the maximum possible total bias in 

estimating the model parameters whereas ALARM estimator 

has the least total bias among all estimators considered and its 

bias further tends to decrease with n.     

 

The results summarized in table4 shows that OLS gives worst 

results with regards to TAB and TMSE. The remaining robust 
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estimators offer negligible amount of bias and are almost 

equally efficient. However, ALARM estimator is the most 

efficient one as its TMSE is the smallest and becomes more and 

more efficient as sample size increases. Table 5 presents the 

results for more extreme contamination, that is, for 20% 

outliers. The proposed estimator outperforms all other 

estimators for all n and p as it has the smallest TMSE among all 

estimators. Except OLS and Huber estimators, all other robust 

estimators offer the same amount of TAB but are comparatively 

more biased contrary to the case of 10% outliers present in the 

data.  Also the TMSE’s are inflated for the robust estimators due 

to increased percentage of outliers. Table 6 presents results 

based on 20% contamination in Y-direction. Due to larger 

variance of the contaminating distribution, the performance of 

all estimators is affected yielding comparatively more deviating 

estimates of the parameters yielding larger TAB’s and TMSE’s, 

particularly, when p is large. But again ALARM estimator 

comparatively performs better than rest of the estimators. 

However, the results are not very promising for any of the 

estimators under consideration.  

 

Table 7 contains results based on the highest percentage of 

contamination in XY- direction ( λ = 40%). The results for all 

estimators are not much promising as they are in case of lower 

percentage of outliers. Among all estimators, even for λ = 40% 

in both XY- directions, ALARM estimator provides 

comparatively better results in terms of TMSE for almost all n 

and p. With increasing sample size, it provides more efficient 

results with regards to TMSE. Hampel estimator is the second 

best performer. Thus, the results indicate that ALARM 

estimator has highest break down point among the competing 

estimators in case of outliers in XY- direction. 

 

Tables (8-9) summarize the results based on percentage of 

outliers λ =  20% and 40% in Y-direction only. The results 

clearly indicate that ALARM estimator provides very close 

estimates as compared to other robust redescending estimators 

for all n and p. However, the results are not very promising for 

large p. Hampel estimator is a close competitor of ALARM 

estimator. The performance of ALARM estimator gets 

improved with increasing sample size. The results presented in 

Table9 ( λ = 40%) are almost similar to those of table 8 ( λ =
20%) for all robust estimators. But OLS provides worst 

estimates due to increased percentage of outliers. The winner of 

all the estimators, even in case of λ = 40%, is ALARM 

estimator. Thus our proposed redescending estimator has the 

highest break down point in case of outliers in y-direction which 

is similarto argumentsmade researchers
13,14

. 

 

Figure 7 describes how the efficiency is affected by sample size 

and the number of predictor variables. It is obvious from the 

figure that the asymptotic efficiency of ALARM estimator is a 

non-decreasing monotonic function of the tuning constant. The 

efficiency gets its maximum around c = 3 for all sample sizes 

and all values of p. 
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Figure-7 

Asymptotic Efficiency of the Proposed Estimator 

 

The efficiency of the proposed estimator is highest for n = 300 

and p = 1. The larger the value of p, the lesser is the efficiency 

of ALARM estimator but the efficiency increases as n increases 

even for larger value of p. 

 

Real Data Examples: We evaluate the performance of our 

proposed estimator along with five other estimators on real data 

sets.  These real data sets are available in the literature. These 

data sets have widely been used by researchers in the context of 

robust statistics and robust regression.  

 

Example 1 (Belgian phone calls data): Outliers in Y-space: 

This data set
17

 is based on the number of international calls from 

Belgian in the year 1950 to 1973. The data contain 24 data 

points on 2 variables. The two variables are: the number of calls 

received (Y) in tens of millions and the year(X).  This data set 

has widely been analyzed in the literature by various researchers 

in the context of robust regression and detection of outliers. The 

data set contain outliers in Y-direction. The results presented in 

table 10 indicate that all the robust methods, including Huber 

estimator, provide much closed estimates. 

 

Table-10 

Estimates of the model parameters for Phone calls data 

Method Coefficient Data points 

 Used 

WRSS
* 

intercept          X                

OLS 

Huber 

Hampel 

Andrew 

Tukey 

ALARM 

-26.006 

-7.203 

-5.223 

-5.211 

-5.211 

-5.242 

0.504 

0.146 

0.110 

0.109 

0.109 

0.110 

24 

17 

17 

17 

17 

17 

695.435 

0.600 

0.202 

0.114 

0.114 

0.201 

 

The estimates provided by our proposed estimator are very close 

to Hampel, Andrew and Tukey estimators. The robust fit and the 
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residuals plots based on ALARM estimator (figure 8 and figure 

9) clearly indicate that ALARM estimator makes use of good 

data points and clearly detecting 6 bad outliers and one good 

outlier. Majority of the data points are represented by our 

proposed estimator. 

 
Figure-8 

Robust and OLS residuals versus fits 

 

 
Figure-9 

Robust residual versus fits 

 

Example 3 (Heart Catherization Data): Outliers in X-space: 

This data set have been analyzed by various researchers for 

outliers and multicollinearity
18,19

. This data set contains 12 

observations on three variables. The three variables are: catheter 

length (Y) in centimeters, patient height (X1) in inches and 

patient weight (X2) in pounds. 

 

Table-11 

Estimates of the model parameters for Heart data 

Method 
Coefficient 

Data points used WRSS
* 

Intercept X1 X2 

OLS 

Huber 

Hampel 

Andrew 

Tukey 

ALARM 

20.376 

26.521 

63.362 

63.525 

63.523 

63.359 

0.211 

0.012 

-1.227 

-1.229 

-1.229 

-1.227 

0.191 

0.248 

0.688 

0.689 

0.689 

0.688 

12 

12 

8 

8 

8 

8 

128.479 

7.095 

2.887 

2.599 

2.917 

2.884 

*Weighted Residual Sum of Squares 

 

 

Table-12 

Fitted Values based on OLS and various redescending  M-estimators 
Y OLS Huber Hampel Andrew Tukey ALARM 

37 37.03  36.97  38.39 38.45 38.45  38.39  

50 51.62  50.49 49.83  49.86  49.86  49.89 

34 35.06 35.79  41.79  41.87 41.87  41.73 

36 34.43  34.45 35.55  5.62 35.62 35.68 

43 39.90  39.98  43.34  43.40  43.40  43.31  

28 31.73 31.22  27.83  27.90  27.89  27.89 

37 36.79  36.60  37.11  37.18  37.17  37.05 

20 26.74  28.91  41.61  41.71  41.71  41.61 

34 34.47  35.16 40.69  40.76  40.76  40.69 

30 27.14  29.17  41.07 41.17  41.17  41.07 

38 31.34 32.14  37.33 37.41 37.41  37.43 

47 47.69 46.82 46.59 46.64 46.63 46.59 
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Table 11 and table 12 present the estimates obtained and the 

fitted values using OLS, ALARM estimator and other robust 

methods. OLS and Huber estimators are severely affected by the 

presence of 4 outliers and offer very poor estimates of the 

parameters. On the other hand, ALARM, Andrew, Hampel and 

Tukey estimators show resistance to those 4 outliers. ALARM 

estimator shows good promising results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10 

Robust and OLS residuals versus fits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-11 

Weights versus Std. residuals 

 

Figure 10 and figure 11 indicate the influence of outliers on the 

OLS and ALARM. The above figures also show that our 

proposed estimator detects all 4 outliers present in the data and 

shows resistant against them. The proposed estimator assigns 

maximum possible weight (very near to 1) to the good data 

points. 

 

Conclusion 

We proposed a new redescending M-estimator, called, ALARM 

estimator which is more linear in the middle, smooth and 

continuous. Hence, according to Winsor’s principle, we 

conclude that our proposed estimator possesses optimal 

properties.  

 

Simulation study and real data exampleswere used to evaluate 

and compare the performance of our proposed ALARM 

estimator with some estimators existing in the literature. In case 

of clean data from Normal distribution, the performance of 

ALARM was almost the same as that of OLS which and it 

outperformed rest of the estimators. In case of contaminated 

data (outliers in both XY- direction), ALARM estimator was 

found to be the best among all estimator for all n and p and for 

all percentages of outliers in the data as it offered promising 

results in all scenarios. The performance of ALARM estimator 

improved with increasing sample size. The breakdown point of 

ALARM estimator was found to be higher than rest of the 

estimators. The efficiency of ALARM estimator was also better 

than all other estimators. All robust estimators performed very 

well in case of all levels of contaminations in y-direction but 

ALARM estimator performed better than all redescending M- 

estimators.  
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