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Abstract 

In this present work, a special tensor ijkikjjkiijkijk hahahaLV +++= λ is introduced and some properties of Finsler 

space admitting the so-called tensor is studied. 
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Introduction 

Let  )3( ≥nF
n

 be an n-dimensional Finsler space with metric 

function ),( yxL . There are five kinds of torsion tensors in the 

theory of Finsler space based on Cartan’s connection, out of 

which 
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As (v)hv-torsion tensor and (h)hv-torsion tensor are of great 

importance tensors for the present study, where hijkP  is as hv-

curvature tensor. 

 

Various interesting forms of these tensors have been studied by 

many geometers
1-4

. One of them is a C-reducible Finsler space  

in which the torsion tensor  ijkC  is of the form
5
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where  ijh  is the angular metric tensor and 
jk

ijki gCC =  , 

where 
jk

g  is reciprocal of the metric tensor  jkg . 

 

Izumi
2,3

 introduced 
∗P -Finsler space in which ijkP  is of the 

form 

ijkijk CP λ=                 (2) 

 

where λ  is a scalar homogeneous function of degree zero in  
i

y . In a P-reducible Finsler space the tensor  ijkP  is of the 

form
6
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where jiii CCG |0| == . A Finsler space in which 0=ijkP  is 

called a Landsberg space 
7
. If 0| =hijkC , then 

nF  is called a 

Bewald’s affinely connected space
8, 9

. 

 

Prasad
10

 introduced a special form of torsion tensor ijkP  as 

follows 

ijkikjjkiijkijk hahahaCP +++= λ               (4) 

 

Where ),( yxλλ =  is a scalar homogenous function of degree 

1 and )(xaa ii =  is a homogenous function of degree 0 with 

respect to 
i

y . He then studied some properties of
nF satisfying 

(4). Peyghan  et. al.
11

 studied 
nF  satisfying (4) as generalized 

P-reducible Finsler space. 

 

Preliminaries 

Let M be an n-dimensional 
∞

C  manifold, By MTx we mean 

the tangent space at Mx ∈  and by 0\TM  the slit tangent 

bundle of M. 

 

A Finsler metric on M is a function  ),0[: ∞→TML  which 

has the following properties: i. L  is 
∞

C on 0\TM . ii. L  is 

positively homogenous function of degree 1 on TM . iii. For 

each MTy x∈ , the metric tensor ijg , the angular metric 

tensor ijh  are respectively given by 
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The angular metric tensor ijh  can also be written in terms of the 

normalized element of support
12
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For 0\MTy x∈  define Cartan torsion tensor vector as: 

ijk

jk

i CgC =: . 

 

According to Deicke’s theorem,  0=iC   is the necessary and 

sufficient condition for 
nF  to be Riemannian. 

 

Let  ),( LMF
nn

=  be a Finsler space . For  0\MTy x∈  , 

we define  
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A Finsler space 
nF  is said to be C-reducible if   0=ijkM . 

Next, we define the tensor 
l

lijkijk yCL |:=                 (6) 

 

where the ‘|’  means h-covarient differentiation with respect to 

Cartan connection. 

 

A Finsler space 
nF  is called a Landsberge space if  0=ijkL . 

Define 

ijk

jk

i LgL =:                   (7) 

A Finsler space 
nF  is said to be weakly Landsberg space if   

0=iL 13
. 

Moreover,we define 
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A Finsler space  
nF  is said to be P-reducible if   0=ijkM . 

It is obvious that every C-reducible Finsler space is P-reducible, 

but the converse is not true. Peyghan et. al. proved  the 

following theorem
11

. 

 

Lemma 1: Let (M,L) be a generalized P-reducible Finsler 

manifold. Then  

MM λ=   

We define  
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where 

ijkikjjkiijkijk hahahaLV +++= λ:             (10) 

and 

ijk

jk

i VgV =:                              (11) 

 

The purpose of the present paper is to study  
nF  satisfying 

(10). 

 

Properties of nF admitting the tensor ijkV   

Let 
nF  be a Finsler space satisfying (10), when  1=λ , and 

ia  vanishes then 
nF is a Landsberg space. Again if  0=ijkV , 

then from (10) it follows that 
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Hence we have the following propositions: 

Proposition 1: A Finsler space satisfying (10) is a C-reducible 

Finsler space iff   0=ijkV . 

Proposition 2: Let a Finsler space
nF satisfying (10) be a 

weakly Landsberg space, then,  ii
V

n
a

1

1

+
= . 

The proof immediately follows from contraction of (10) with 
jk

g . We prove the following theorem. 

 

Theorem 1.  Let (M,L) be a Finsler manifold satisfying (10), 

then  

MM λ=                                           (12) 

Proof:   Suppose (10) is satisfied then contracting it by  
ij

g  and 

using  1−= nhg ij

ij
 and kikj

ij

jki

ij
ahaghag == )()( , we 

get: kkk anLV )1( ++= λ ,                                                                           
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Substituting (13) in (10) we obtain 
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The relation (14) , may be put as 
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The relation (15) is equivalent to (12) by which the proof of the 

theorem is completed. 

 

Corollary 1: If (M,L) a Finsler manifold satisfying (10) is a 

generalized P-reducible Finsler manifold as well, then 

MM = . 
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Proof:  The proof immediately follows from the theorem (3.1) 

and lemma (1). 

 

Theorem 2: Let (M,L) be a Finsler manifold satisfying (10) and   

kijllijk VV || = , 

Then 
nF is a P-reducible Finsler space . 

 
Proof:  Given that 

0|| =− kijllijk VV .                            (16) 

 

Contracting (16) with  
l

y  yield 
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l

lijk yV                                                                             (17) 

 

Taking h-covarient derivative of (10) and then contracting by 
l

y ,we get 
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where   
l

lii

l

l yaay || , == λλ  . By replacing (17) into (10), we 

obtain 
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From (17) and (19), we get 
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Putting the relation (21) into (20) and simplifying we have 

)(
1

1
ijkikjjkiijk

hLhLhL
n

L ++
+

= . 

 

Conclusion 

Finsler space is a natural extension of the Riemannian space in 

which all geometric objects depends not only in positional 

coordinates as in Riemannian geometry but also in directional 

arguments. There are Finsler spaces with special structures 

called as special Finsler spaces such as Berwald’s space, 

Landsberg space and so on. In this paper Finsler space with a 

special tensor as a generalized Landsberg space is introduced 

and obtained some results.  
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