
 Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 

 Vol. 2(5), 39-43, May (2013) Res.J.Recent Sci.  

 

 International Science Congress Association        39 

Testing Goodness-of-Fit in Autoregressive Fractionally Integrated Moving-

Average Models with Conditional Hetroscedastic Errors of Unknown form 
 

Ali Amjad 
1
, Salahuddin

2 
and Alamgir

2
 

1Department of Statistics, Islamia College University Peshawar, PAKISTAN  
2Department of Statistics, University of Peshawar, Peshawar, PAKISTAN 

 

Available online at: www.isca.in 
Received 8th December 2012, revised 18th January 2013, accepted 11th February 2013 

 

 

 

Abstract  

This paper considers testing goodness-of-fit in Autoregressive fractionally integrated moving-average models with 

conditional hetroscedasticity. We extend the applicability of Hong’s and power transformed Hong’s test statistics as 

goodness-of-fit tests in ARFIMA-GARCH models, where the structural form of GARCH model is unknown. Simulation study 

is performed to assess the size and power performance of both tests. 
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Introduction  

It is a nontrivial task to find an appropriate or a parsimonious 

model in regression and time series data analysis. Residuals 

analysis is commonly used as model diagnostics in time series 

model building. The adequacy of the fitted time series model is 

commonly tested by checking the assumption of white noise 

residuals. If the appropriate model has been chosen, there will 

be zero autocorrelation in the residuals series. Let te  be the 

series of the residuals from the fitted model, then in hypothesis 

testing settings we can state our null and alternative hypothesis 

as  

0)(:0 =jH eρ  for all 0≠j  versus 0)(:1 ≠jH eρ  for 

some 0≠j . 
 

In frequency domain approach the above hypothesis can be 

stated as  

π2/1)(:0 =vfH e , versus π2/1)(:1 ≠vfH e  for some 

),( ππ−∈v , 

 

where 
θρπθ ik

zk ee ekf −

∈

− ∑= )()2()( 1
 is the normalized 

spectral density function of te . Rejecting the above null 

hypothesis implies the inadequacy of the fitted model. Several 

tests have been developed to test the hypothesis of zero 

autocorrelation. Box and Pierce
1
 have developed a portmanteau 

test to test the adequacy of the fitted time series model. The test 

statistic is given as: 

∑
=

=
m

j

en hnQ
1

2 )(ρ̂                 (1)  

where )(ˆ heρ  is the autocorrelation of te at lag h  and m  is 

assumed to be fixed. They showed that for large n  (sample 

size), the statistic 
n

Q  has chi-square distribution with m  

degrees of freedom assuming that te  series is independently 

and identically distributed. If te  are the residuals from a fitted 

time series model, then nQ  is distributed as 
2χ  with pm −  

degrees of freedom, where p   
is the number of parameters in 

the model. Davis et al.
2
 showed that the distribution of nQ  can 

deviate from chi-square and the true significance level is likely 

to be lower than the predicted significance level. A modified 

version of Box and pierce
1
 test statistic was proposed by Ljung 

and Box
3
 , which has the following form: 

jnhnnQ
m

j

en
−+= ∑

=

/)(ˆ)2(
1

2ρ                             (2) 

They preformed a comparative study of their test with the test of 

Box and Pierce
1
 and showed that their test has substantially 

improved approximation to chi-square distribution. For various 

choices of m , Ljung
4
 examined the properties of Box and 

Pierce
1
 test statistic. They suggested a modified version of Box 

and Pierce test statistic that allowed the use of various values of 

m . Their simulation studies showed that the modified test is 

more powerful under various innovations distributions. Hong
5
  

introduced three classes of consistent one sided tests for testing 

serial correlation of the residuals of the linear dynamic model 

that include both lagged dependent and independent variables. 

Under the null hypothesis of zero autocorrelation, they showed 

that the standardized form of all these test statistics is 

asymptotically )1,0(N . To improve asymptotic normality of 

Hong’s tests, Chen and Deo
6 

introduced power transformed 

Hong’s test. They examined the performance of Hong’s and 

power transformed Hong’s test statistics as goodness-of-fit tests 
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for different time series models with identically independent 

errors. 

 

 In the current study, we consider model diagnostic checking of 

ARFIMA models when its innovations are conditionally 

hetroscedastic of unknown form.  

 

The Model 

Long memory processes have been widely used in the analysis 

of time series data. Nile river data  is an outstanding example 

which exhibits long memory behaviour
7
. Other examples are the 

Ethernet traffic time series studied by Leland et.al.
8
 and foreign 

exchange rate returns studied by Goodhart and Hare
9
. The 

common feature of these time series is that the decay of the 

autocorrelation function is like a power function rather than 

exponential as in the case of short memory time series. The 

spectral density of such processes behaves just like a power 

function and diverges as the frequency goes to zero. 

 

Autoregressive fractionally integrated moving average process 

(ARFIMA(p, d, q)) is a well known class of long memory time 

series. These models take into account the hyperbolic decay of 

autocorrelation function. ARFIMA(p, d, q) were independently 

introduced by Granger and Joyeux
10

 and Hosking
11

. This model 

is a generalization of the ARIMA(p, d, q) model, where d is 

taken to be an integer.   

 

It is defined as 

,)1)(()( t

d

t eBBXB
−−= θφ               (3)   

where ∑
=

=
p

i

i

i BB
0

)( φφ  and   ∑
=

=
q

j

j

j BB
0

)( θθ , 10 =θ , 

10 =φ   ( and B  is the backward shift operator ), are the 

autoregressive and moving-average operators respectively; 

)(Bφ and )(Bθ  have no common roots, 
dB −− )1(  is 

fractionally differencing operator defined by the binomial 

expansion 

,.......,.........2,1,0,
)1(

)(
)1( ∑ =

+Γ

+Γ
=− − jB

j

dj
B jd

     (4) 

 

for d < 0.5, d ≠ 0, -1, -2, ......... and te is a white noise sequence 

with finite variance. If d > 0, the series exhibit long memory. 

ARFIMA models have proven useful tools in the analysis of long 

range dependence processes. Autoregressive fractionally 

integrated moving average (ARFIMA) models with GARCH 

errors have been widely used in time series data analysis. Baillie 

et al.
12

 used ARFIMA-GARCH models to analyze the inflation of 

ten different countries. To model daily data on the Swiss 1-

month Euromarket interest rate during the period 1986–1989, 

Hauser and Kunst
13

 used fractionally integrated models with 

ARCH errors. Other applications of fractionally integrated 

models with conditionally hetroscedastic errors can be found in 

Hauser and Kunst
13

, Lien and Tse
14

, Eleck and Markus
15

 and 

Koopman et al
16

. A two stage model building strategy is 

generally used to fit an ARFIMA-GARCH model. In the first 

step an ARFIMA model is fitted to the given series and then a 

GARCH model to the residuals of the ARFIMA model. So, it is 

important to select a correct ARFIMA model in the first stage. 

The misspecification of ARFIMA model in the first stage will 

lead to misspecification of the GARCH model in the second 

stage
17

. The tests developed by Chen and Deo
18

, Delgado et 

al.
19

, Delgado and Velasco
20

 and Hidalgo and Kreiss
21

 all work 

for long memory time series models. However, they assumed 

Gaussian or linear processes with conditionally homoscedastic 

noise processes. Ling and Li
22

 and Li and Li
23

 have studied BP 

type tests for model diagnostics of ARFIMA-GARCH models 

but assuming that the parametric form of GARCH model is 

known. In the present work, we considered model diagnosis of 

ARFIMA models with GARCH errors of unknown form. We 

investigate the performance of Hong;s statistic as a goodness of 

fit test for ARFIMA-GARCH models through simulation study. 

We also examine the performance of power transformed Hong’s 

statistic of Chen and Deo
6
 in the above settings. 

 

The Test Statistics 

In a seminal paper Hong
5
 introduced several test statistics that 

are generalization of the Box and pierce
1
 test statistic. These 

tests are based on the distance between the kernel based spectral 

density estimator and the spectral density of the noise under the 

null hypothesis. The standardized form of the Hong’s test 

statistics with quadratic distance is given by 

))(2/()()(ˆ)/(
2/1

1

1

22
kDkCjpjknH n

n

j

nenn 




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



−= ∑

−

=

ρ       (5)   

where )/()/1()(
1

1

2∑
−
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−=
n
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nn pjknjkC , 

)/()/)1(1)(/1()(
2

1

4

n

n

j

n pjknjnjkD ∑
−

=

+−−= ,  (.)k  is 

the kernel function which is non-negative and symmetric and 

np is the bandwidth that depends on the sample size. Under the 

assumption of i.i.d errors of the model, when ∞→np  and 

)(nopn = , Hong
5
 showed that the asymptotic null distribution 

of nH  is standard normal. Hong and Lee
24

 extended the above 

result relaxing the assumption of i.i.d errors and established the 

results assuming the conditional heteroscedastic errors of 

unknown form.  

 

Simulation results of Chen and Deo
6
 found that for small 

samples the distribution of Hong’s test is right skewed, which 

results to the size distortion of the test. To deal with this 

problem, Chen and Deo
6
 introduced a power transformed 

version of Hong’s test statistics. The idea behind this 

transformation is to induce normality. 
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They showed that the appropriate power β  to be used such that 

β
nH  become approximately normal is given by 

∑

∑∑

=

==
−=

n

nn

p

j

j

p

j

j

p

j

j

k

kk

1

24
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1

2
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)(

3

2
1β .         (6) 

Monte Carlo study of Chen and Deo
18

 showed that for the above 

choice of β , the distribution of  
β
nH  could be well 

approximated by normal distribution. In our Monte Carlo 

simulations the above value of β  is used. 

 

Monte Carlo Evidence 

In this section, we investigate, through simulations, the finite 

sample performance of the Hong’s and power transformed 

Hong’s test statistics as goodness-of-fit tests for ARFIMA (p, d, 

q) models with dependent errors. We use two sample sizes 

100=n  and 300=n . The error distribution is taken to be 

standard normal. We use the following four kernels for both 

tests to examine the effect of different kernels. 

 

Daniel (DAN):     ,/)sin()( wwwk π=  ),( ∞−∞∈w  

Parzen(PAR):    










≤≤−

≤+−

=

otherwise

ww

www

wk

0

/6/3)6/1(2

/36/6)6/(61

)( 3

32

πππ

πππ                     

QS:                   

{ })3/5cos(3/5/)3/5sin()5/9()( 2
wwwwwk πππ −=  

                              ),( ∞−∞∈w  

Bartlett(BAR): 



 ≤−

=
otherwise

zz
wk

0

11
)(   

To investigate the effect of np , we use three different rates: 

[ ])ln(npn = , [ ]2.03npn =   and [ ]3.03npn = .  For 

100=n  these rates deliver =np  5,  8,  12 and for 300=n  

these rates make =np 8,  10,  17. 

To examine the size performance of Hong’s and power 

transformed Hong’s test statistics we consider the following 

models. 

M1: 0.1),0.85) 5,GARCH((0.0-0,0.4,0)(ARFIMA  

M2:  0.1),0.85) 5,GARCH((0.0-,0.4,0)ARFIMA(0.5  

 

For power performance of both tests the following models are 

used. 

M3: 0.1),0.85) 5,GARCH((0.0-0.4,0) 2,ARFIMA(0,.   

alternative fitting model as  ,0) d ARFIMA(0,  

M4: 0.1),0.85) 5,GARCH((0.0-.4,0.2)ARFIMA(0,0    

alternative fitting model as  ,0) d ARFIMA(0,  

M5: 0.1),0.85) 5,GARCH((0.0-,0.4,0.2)ARFIMA(0.5    

alternative fitting model as  0) d, ARFIMA(1, . 

 

The results for M1 – M5 have been shown in table 1 to 5. These 

results report the percentage rejection rates at nominal levels of 

5% and 10% based on 5000 replications. For small sample size 

n=100 size distortions occur for both tests but come close to the 

nominal size for n=300. The power transformed test is more 

undersized as compared to Hong’s test statistics.  The size is 

better for M2 compared to M1. There is no significant effect of 

different kernels on the size of both tests. The size becomes 

better as we increase the bandwidth np . This is true for both 

sample sizes, tests and different kernels. 
 

Both tests have good power performance for different sample 

sizes but the power increases as we increase the sample size 

from 100 to 300. Different kernels have no significant effect on 

the power of both tests. 

  

 

Table-1 

Rejection rate under the ARFIMA(0.2,0.4,0)-GARCH((0.05, 0.1),0.85) alternative, fitting model ARFIMA(0,d,0) 

 n=100 n=300 

 p=5 

5%       10% 

p=8 

5%       10% 

p=12 

5%       10% 

p=8 

5%       10% 

p=10 

5%     10% 

p=17 

5%      10% 

H   BAR 

      TUK 

      QS 

      DAN 

 

H
B    

 BAR 

      TUK 

      QS 

      DAN 

33.12   40.56 

33.76   41.26 

31.08   38.66 

32.04   39.58 

 

26.56   40.36 

27.38   41.48 

25.08   38.08 

26.28   38.68 

29.78   37.56 

29.26   36.58 

27.16   34.38 

27.96   35.18 

 

24.26   36.60 

23.68   35.88 

22.30   33.20 

22.86   34.16 

27.64   35.04 

26.40   33.60 

25.62   32.10 

25.80   32.62 

 

22.94   34.06 

22.02   32.28 

21.32   30.88 

21.80   31.34 

57.12   64.22 

56.34   63.62 

53.70   61.14 

54.62   61.94 

 

51.10   63.18 

50.58   62.86 

48.28   59.94 

49.32   60.66 

55.36    62.72 

54.26    61.42 

51.84    59.42 

52.66    60.10 

 

49.74    61.70 

48.62    60.46 

46.32    58.04 

47.56    58.90 

51.74   59.34 

49.72   57.54 

47.54   55.32 

48.22   55.90 

 

46.92   58.12 

44.60   55.98 

42.76   53.92 

43.70   54.54 
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Table-2 

Rejection rate under the ARFIMA(0,0.4,0)-GARCH((0.05, 0.1),0.85) 

 n=100 n=300 

 p=5 

5%    10% 

p=8 

5%     10% 

p=12 

5%    10% 

p=8 

5%     10% 

p=10 

5%    10% 

p=17 

5%    10% 

H   BAR 

      TUK 

      QS 

      DAN 

 

H
B  

 BAR 

       TUK 

       QS 

       DAN 

6.84    9.42 

6.78    9.44 

6.84    10.08 

6.76    9.92 

 

4.68    9.34 

4.58    9.50 

4.92    9.72 

4.94    9.62 

7.10   10.12 

7.12   10.10 

7.28   10.48 

7.16   10.14 

 

5.26     9.68 

5.28     9.78 

5.34     9.92 

5.34     9.80 

7.16    10.76 

7.26    10.84 

7.40    11.10 

7.44    11.16 

 

5.26    10.12 

5.28    10.18 

5.56    10.50 

5.56    10.58 

3.84    9.02 

3.96    9.04 

4.10    9.12 

4.44    9.20 

 

3.30    6.70 

3.38    6.64 

3.86    7.82 

3.94    7.40 

4.54    9.90 

4.76    9.60 

5.24    9.70 

5.34    9.74 

 

3.66    7.46 

3.76    7.66 

4.60    8.56 

4.40    8.14 

5.66    10.10 

5.94      9.96 

6.10    10.10 

6.52    10.20 

 

4.80      9.22 

5.16      9.40 

5.96    10.24 

5.80    10.20 

 

Table-3 

Rejection rate under the ARFIMA (0,0.4,0.2)-GARCH((0.05, 0.1), 0.85) alternative fitting model ARFIMA(0,d,0) 

 n=100 n=300 

 p=5 

5%     10% 

p=8 

5%      10% 

p=12 

5%    10% 

p=8 

5%     10% 

p=10 

5%    10% 

p=17 

5%    10% 

H   BAR 

      TUK 

      QS 

      DAN 

 

H
B    

BAR 

      TUK 

      QS 

      DAN 

33.88   41.58 

34.40   42.10 

32.00   39.50 

32.54   21.00 

 

27.12    40.34 

27.76    42.38 

25.74    38.84 

26.60    39.52 

30.84    37.94 

30.18    37.38 

28.12    34.94 

29.02    21.48 

 

24.56   35.90 

24.22   36.48 

22.22   34.02 

23.28   34.72 

28.12   35.20 

26.86   33.96 

24.80   32.30 

25.44   20.66 

 

22.94   32.64 

21.72   32.80 

21.18   30.80 

21.36   31.28 

63.10   70.12 

62.48   69.34 

59.52   66.84 

60.28   68.00 

 

56.48   69.08 

56.02   68.70 

53.42   65.88 

55.10   66.90 

61.22   68.68 

60.00   67.46 

57.16   65.02 

58.04   65.86 

 

55.14   67.64 

54.00   66.58 

51.76   63.72 

53.16   64.66 

56.80    65.06 

54.78    62.52 

52.26    60.70 

52.62    61.38 

 

51.58    63.74 

49.12    61.24 

46.72    59.44 

47.90    60.18 

 

Table-4 

Rejection rate under the ARFIMA (0.5,0.4,0)-GARCH((0.05, 0.1),0.85)  alternative fitting model ARFIMA(1,d,0) 

 n=100 n=300 

 p=5 

5%    10% 

p=8 

5%    10% 

p=12 

5%    10% 

p=8 

5%     10% 

p=10 

5%    10% 

p=17 

5%    10% 

H   BAR 

      TUK 

      QS 

      DAN 

 

H
B    

BAR 

      TUK 

      QS 

      DAN 

2.36    3.82 

2.06    3.48 

2.78    4.48 

2.62    4.32 

 

1.54    5.20 

1.28    3.48 

1.88    4.36 

1.76    4.18 

3.38      5.38 

3.22      5.32 

4.30      6.18 

3.96      6.98 

 

2.40      5.94 

2.28      5.08 

3.12      5.98 

2.98      5.68 

4.84    6.62 

4.70    6.76 

5.84    7.64 

5.52    8.78 

 

3.58    7.36 

3.56    6.32 

4.32    7.30 

4.16    6.96 

4.74    7.20 

4.70     6.98 

4.10     8.50 

4.76     8.26 

 

3.36     6.84 

3.22     6.62 

3.52    7.12 

3.22    7.82 

4.98     8.34 

4.88     8.24 

4.94   10.08 

5.52     9.54 

 

4.16     7.78 

4.18     7.80 

4.28     8.58 

4.32     8.96 

5.20    10.42 

5.10    10.64 

5.20    10.94 

5.84    10.62 

 

5.18    9.68 

5.30    10.22 

5.32    10.26 

5.04    10.40 

 

Conclusion 

We applied the Hong’s and power transformed Hong test of 

Chen and Deo
6
 for goodness-of-fit of autoregressive fractionally 

integrated moving average models with conditionally 

hetroscedastic errors of unknown form. Our simulation study 

reveals that for large sample size (n = 300) both the tests have 

good size and power performance, when applied to different 

long memory models with conditionally hetroscedastic errors 

but for small sample (n = 100) both tests are undersized. The 

power transformed test is more undersized compared to Hong’s 

test. This size distortion occurs due to the fact that the mean and 

variance of these test statistics are based on the asymptotic 

theory and could be misleading in small samples as reported by 

Chen and Deo
6
. The above results show that some size 

correction devices are needed in the above test statistics for 

ARFIMA models with dependent errors of unknown form. 
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Table-5 

Rejection rate under the ARFIMA(0.5,0.4,0.2)-GARCH((0.05, 0.1),0.85)  alternative fitting model ARFIMA(1,d,0) 

 n=100 n=300 

 p=5 

5%    10% 

p=8 

5%     10% 

p=12 

5%     10% 

p=8 

5%     10% 

p=10 

5%      10% 

p=17 

5%      10% 

H   BAR 

      TUK 

      QS 

      DAN 

 

H
B    

BAR 

      TUK 

      QS 

      DAN 
 

15.52   20.72 

14.72   20.04 

16.24   21.14 

16.08   20.78 

 

10.72   20.68 

10.16   20.22 

11.64   20.92 

11.76   20.40 

16.58   22.00 

16.50    21.88 

16.84   22.42 

16.82   22.24 

 

12.44   21.32 

12.34   21.36 

13.08   21.50 

13.06   21.34 

16.68   22.28 

16.74   22.32 

16.46   21.78 

16.60   22.06 

 

13.32   21.42 

13.24   21.42 

13.84   20.90 

13.80    21.20 

46.00   53.10 

46.22  53.20 

45.42  52.88 

45.88   53.14 

 

39.94   52.28 

39.94   52.42 

39.44   51.82 

40.30   51.88 

45.66   52.82 

45.56   52.94 

43.96   51.84 

44.96   52.08 

 

39.24   51.98 

39.76   51.80 

38.44   50.58 

39.30   50.92 

42.98   50.90 

42.06   50.26 

40.82   48.56 

41.32   48.58 

 

38.14   49.58 

37.52   48.90 

35.86   47.20 

36.56  47.58 
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