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Abstract  

Buckling behavior of plates and shells is one of the important characteristics in analysis of any structure. One the most 

significant parameter that must be considered in buckling phenomenon is imperfection. In this paper the effect of imperfection 

on buckling load of steel rectangular plates under uni-axial in-plane compressive loading is investigated by numerical and 

experimental methods. The plates were free on two opposite sides and simply supported at the load side whereas the opposite 

side is either clamped or simply supported. This means that the plate primarily exhibits a type of column’s buckling.  
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Introduction 

Using plates and shells in fabrication of many structures is 

unavoidable. These structures may experience axial 

compression loading in their longevity and buckle through these 

loads. Furthermore, these structures usually have 

discontinuities, such as cutouts, which may have effects on their 

stability. Therefore we must consider any parameter that affect 

on buckling load. Buckling analysis of thin-walled structures 

under axial compression has been investigated by many 

researchers
1-2

. Also thin plates under the concentrated and the 

distributed forces on the whole plate edge have been 

investigated by some other researches
3-4

. Of course, the stability 

of these plates is dependent on many parameters such as type of 

support, type of loading, ambient temperature, imperfection and 

etc. a direct matrix method for the bucking loads on structures 

was applied to the examination of the stability of flat square 

plates with central square perforations under various 

combinations of bi-axial loading by Yetterman and Brown
5
. 

Their results were given for a wide range of hole to plate size 

from 0 to 0.8. Christopher et al.
6 

 studied the elastic stability of 

plates containing perforations using the conjugate load-

displacement method. The effect of the size of a central square 

hole in a square plate on the elastic buckling load was 

investigated. Chang-jun and Rong
7
 have been provided and 

solved a system of new boundary integral equations to address 

the plane stress, critical loads and post-buckling problem for 

perforated thin plates, based on the general bifurcation theory 

and mathematical model for the stability analysis of perforated 

thin plates. Their results show that the boundary element 

method was efficiently applied to the post-buckling analyses of 

perforated thin plates. 

 

Also in another study Shariati et al
8
 investigate the buckling of 

tubular steel shells with elliptical cutout subjected to oblique 

loading. In their study the influence of shell length, shell 

diameter, shell angle and diameters of elliptical cutouts on the 

predicted buckling values has been explored. Shanmugam et al.
9
 

studied on post-buckling behaviour and the ultimate load 

capacity of perforated plates with different boundary conditions 

under the uniaxial and biaxial compression. They used the finite 

element method (FEM) and compared their numerical results 

with the experimental results. They established a design formula 

to determine the ultimate load of buckling of perforated plates. 

Suneel Kumar et al.
10

 have been presented the details of tests 

carried out on the collapse load of stiffened plates with and 

without cutout, with reinforced cutout and initial imperfections. 

Based on strut approach and orthotropic plate approach, a 

generalized computer program for the semi-analytical solutions 

proposed by various investigators was developed. They 

proposed an approximate method based on strut approach to 

calculate the collapse load of stiffened plates with cutouts and 

initial imperfections. Eccher et al.
11

 provided the application of 

the isoparametric spline finite strip method to the elastic 

buckling analysis of perforated folded plate structures. They 

introduced the general theory of the isoparametric spline finite 

strip method. A number of numerical examples of flat and 

folded perforated plate structures illustrated the applicability 

and accuracy of their proposed method. The linear buckling 

analyses of square and rectangular plates with circular and 

rectangular holes in various positions subjected to axial 

compression and bending moment were developed and has been 

studied by Maiorana et al.
12

 The aim of their paper was to give 

some practical indications on the best position of the circular 

hole and the best position and orientation of rectangular holes in 

steel plates, when axial compression and bending moment acted 

together. 
 

As depicted in above review, the cut out existing in the plate, 

the geometry of cut out, the type of loading, the supports of the 

plates are all among the factors which can have a great effect in 

the stability of the plates. In this paper, the numerical and the 
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experimental investigation on the buckling behavior of the 

rectangular plates with circular and square cut outs under uni-

axial in-plane compressive loading in elasto-plastic range with 

various loading bands are performed. The plates are free on two 

opposite sides and simply supported at the load side whereas the 

opposite side is simply supported. This means that the plate 

exhibits primarily a column type of buckling. Moreover, the 

relation between stability of the rectangular plates having square 

and circular cut out with the same cross section has been 

studied. Furthermore, the effects of the various loading lines 

have been studied numerically using ABAQUS. Also, some 

buckling experimental tests have been performed on the 

samples. Numerical and the experimental results are in good 

agreement. 

 

Material and Methods 

The meshed geometry and type of loading are shown in figure 1. 

In this figure, l is the loading band which varies in the range of 

(0≤l≤a).  The position l=0 is relates to the concentrated load 

exerted on the middle of the width of the plate, a, and the 

position l=a represents to the distributed load exerted on the 

entire the width of the plate. 

 

In this investigation, the structural steel rectangular plates with 

100 x 150 x 2.07 mm dimensions are used. These plates have 

square and circular cut outs. The side of the square cut out is 

considered to be e=30 mm and for having the same area of two 

types of cut out, the diameter of the circle is considered to be 

D=33.84mm. The lower edge of the plates has been placed in 

the clamped support and on the other edge, patch compression 

with various bands has been exerted through a simply support. 

The tests have been conducted for the width of loading of l= 

15,30,50,75 and 100 mm. Only the loaded section of the 

boundary is constrained and the rest is free as it is shown in 

Figure 1. In these tests, the post buckling behavior of the plates 

has been fully studied, too. 

 

The mechanical properties of the tested structural steel plates 

have been specified through the tensile test in accordance with 

the ASTM-E8 standard using an INSTRON8802 servohydraulic 

machine with stress-strain curve as displayed in figure 2-a.  The 

obtained elasticity modulus from linear elastic region equal to 

E=218Gpa as it shown in figure 2-b. Moreover the Poisson's 

ratio value is considered to be  =0.33. The data of the plastic 

region of the stress-strain curve has been used for analysis of the 

plastic behavior in ABAQUS software. 

 

The numerical analysis: In Abaqus after defining the 

geometry, boundary conditions and the applied loading, we 

must mesh the structure for analysis. This is achieved through 

using the S8R5 quadrilateral non-linear elements. This element 

is an 8-node element with 5-degree of freedom including 3 

displacements in three directions of the coordinate axes and two 

rotations for each node. In this element, 8 nodes have been 

placed in such a way that 4 nodes have been placed on the 

square corners and 4 other nodes have been placed in the middle 

of the sides of the square (figure 3.). The S8R5 element is very 

suitable for the element arrangement of the thin plates and in 

this research all the analyses have been performed using this 

type of element
13

. 

 

Loading band 

 
Figure-1 

The meshed geometry of the plate and the type of the applied loading (a) The plate with circular cut out (b) The plate with 

square cut out 
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(a)  

(b) 

Figure-2 

(a) The specimen being under the tensile test (b) The stress-strain curve resulted by the experimental test 

 

 
Figure-3 

The S8R5 element 
 

After meshing the specimen, a linear buckling analysis for 

getting eigenvalues is performed by using the “Buckle” solver 

in ABAQUS and the buckling mode shapes are obtained. Since 

in eigenvalue linear analysis, the plastic properties of the 

specimen are not taken into account, a linear finite element 

analysis (eigenvalues), particularly for the plates made of 

ductile materials, overestimates the real value for buckling load. 

Since buckling usually occurs in smaller mode shapes, a linear 

analysis should be performed first for all specimens, to find the 

mode shapes with smaller eigenvalues. For example, the three 

buckling mode shapes has been displayed in the figure 4.  The 

displacements for these mode shapes are saved in a specific file 

and used in the next analysis (Static Riks), so that the effect of 

mode shapes are considered in buckling analysis. Otherwise, the 

software would choose the buckling mode in an arbitrary 

manner that resulting unrealistic results. This step is called 

Buckle in the software. For this step, the Subspace solver 

method of the software was used and three primary mode shapes 

were obtained. Also a numerical calculation was made over the 

loaded band with a constant displacement. 

 

Since the imperfection of the plate considerably affects on 

ultimate buckling load, the imperfection is an important factor 

which must be considered in buckling of the plates. 

Imperfection means the every deviance of ideal manner of each 

structure. To make this point more transparent and clear, the 

effect of the imperfection on the ultimate buckling load of a 

rectangular plate has been compared numerically with two 

different values of the imperfection. The sample is a plate with a 

square cut out which is placed with clamped support in lower 

side and is applied under a 15 mm loading band by a simply 

support in upper side. The critical buckling loads of 13.298kN 

and 11.856kN have been obtained for the values of the 

maximum imperfection amplitude, 0.1 and 0.48 mm, 

respectively. The difference between these two loads is 1.442kN 

and as depicted in figure 5, it is a considerable amount. 

Therefore, prior doing the non-linear analysis, the amount of the 

imperfection must be determined. As a result in this article, the 

maximum imperfection amplitude (the preliminary bend) of all 

plates has been considered to be equivalent to 0.48 mm. It is 

worth mentioning that, this quantity has been calculated through 

the quantity of the maximum imperfection amplitude found in 

the plates used in experimental tests. 
 

Effect of loading band on buckling behavior of plates: In this 

part the effect of the loading band on buckling behavior of 

perforated plates has been numerically studied. In this research 

the loading band is varied between 15 to 100 mm. For sample, 

the behavior of load versus vertical displacement of plate with 

circular cutout (load-displacement curves) under various loading 

has been displayed in figure 6. 
 

Also load-displacement curves for plates with circular and 

square cutouts and perfect (with no cut out) plate for loading 

band l=100 mm are compared in figure 7. Also the critical 

buckling loads of plates with and without cut out for different 

loading bands are given in tables (1). 
 

As shown in the curves, after the load of the plate reaches to the 

critical value, the buckling phenomenon is occurred and the 

plate is bent by a low force. Moreover it is observed that as the 

loading band increases, the ultimate value of the buckling load 

is also increased. 
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(a)             (b) 

 
(c) 

Figure-4 

The mode shapes of the plate with square cut out under a 15mm loading band and the fixed support. (a) Shape of the first 

mode (b) Shape of the second mode (c) Shape of the third mode 
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Figure-5 

The effect of initial curvature (imperfection) on the ultimate buckling load 
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Figure-6               Figure-7 

                  The behavior of load-displacement of the           Comparison of load-displacement curves for plates with  

                               plate with circular cut out   circular and square cutouts and perfect plate for  

           loading band l=100 mm 

 

Table-1 

Results of buckling load for plates with no cutout (perfect) 

and plates with circular and square cutouts 

Critical 

buckling load 

with square 

cutout (kN) 

Critical 

buckling load 

with circular 

cutout(kN) 

Critical 

buckling 

load (kN) 

Loading 

band 

(mm) 

11.851 12.004 12.986 15 

12.256 12.424 13.353 30  

12.486 12.676 13.762  50  

12.821 13.048 14.126 75  

13.076 13.372 14.664  100  
 

As indicated in tables (1), for one specific loading band and 

under the same boundary conditions, the buckling load of the 

specimen with circular cut out is a little higher than the buckling 

load of the specimen with square cut out. For the less difficulties 

of manufacturing and creation of the circular cut out than the 

square cutout and due to the higher buckling load of the 

specimen with circular cut out than the specimen with square 

cut out, it is recommended that for perforated structures which 

don't have any limitations on type of the cut out’s geometry, 

circular cut out is so better.  

 

Experimental results: Experimental technique for 

measurement of maximum imperfection of plates: As 

mentioned above, if we want to make a correct comparison 

between the numerical and experimental results of the plates 

buckling, we must use the plates with the same imperfections. 

Therefore, at first a great number of rectangular plates with the 

desired dimensions were provided and then their imperfection 

was experimentally measured. For this purpose, the amount of 

the preliminary curve obtained through pressing the plate along 

its thickness and drawing its load-displacement diagram 

simultaneously. This operation which was performed by an 

INSTRON servohydraulic machine has been schematically 

displayed in the figure 8 and figure 9 shows a sample under 

imperfection’s measuring test. δ in figure 8, indicates the 

amount of the imperfection.  A sample of load-displacement 

diagram for measuring of imperfection has been displayed in 

figure 10. As it is evident in this figure, where the diagram 

assumes an asymptotic state, it indicates the amount of 

imperfection on the horizontal axis which is almost equal to 

0.36 mm. Then for prevention of changing of the preliminary 

bend the boring operations were performed on the plates which 

had the same preliminary plates by SPARK device.  

 

Experimental measurement of buckling load: The lower edge 

of the plates was placed in clamped support and their upper 

edge was placed in a simply support with various loading bands. 

Also the loading conditions are carried out under displacement 

control with speed of 0.01 mm/s. for sample, the results of 

experimental tests which were conducted on the rectangular 

plates with circular cut outs have been displayed in figure 11. 

It’s obvious that the trend of experimental results is so similar to 

numerical and is in agree with some other reported FEM 

analysis
14-16

. 

  

Results and Discussion 

As shown in figure 11, the trend of the experimental diagrams is 

wholly similar to the numerical diagrams trend and upon the 

increase of the band of the loading, the buckling load is also 

increased. For better understanding of the results, the numerical 

and experimental quantities of the buckling load are compared 

in proportion to the boundary conditions and the various loading 

bands for the specimens having square and circular cut out in 

tables 2 and 3. 
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Table-2 

The numerical and experimental critical buckling loads for 

plate with square cut out (average error = 6.55%) 

Numerical 

error (%) 

Experimental 

buckling load 

(kN) 

Numerical 

buckling 

load(kN) 

Loading 

band(mm) 

12.01 10.584 11.851 15 

7.61 11.389 12.256 30  

5.84 11.796 12.486 50  

0.75 12.918 12.821 75  
 

Table-3 

The numerical and experimental critical buckling loads for 

plate with circular cut out (average error = 9.72%) 

Numerical 

error (%) 

Experimental 

buckling load 

(kN) 

Numerical 

buckling 

load(kN) 

Loading 

band(mm) 

11.99 10.718 12.004 15 

8.14 11.488 12.424 30  

6.43 11.920 12.687 50  

12.32 14.881 13.048 75  

 

We can suppose that these plates buckle as columns. The critical 

elastic buckling load equation for columns is: 

2

2

L

IE
Pcr




                                   (1) 

Where E is the modulus of elasticity, I is moment of inertia and 

L is the length of column for simply support boundary 

condition. And for simply-fixed ends boundary condition the 

critical elastic buckling load equation is: 

2

2

)7.0( L

IE
Pcr




               (2) 

For example for this problem, we have: 

I= bt
3
/12 = [100*(2.07)

3
/12] = 73.914 mm

4
, L = a = 150 mm, 

E= 218000 N/mm
2
. 

Therefore:  

kNN
mm

mmmmN
Pcr 41.1414410

)150*7.0(

)914.73)(/218000(
2

422




 

This result is agree with result of figure 7 for load-displacement 

curve of perfect specimen (critical buckling load, Pcr=15 kN). 

Therefore, we observed that for calculation of nearly critical 

buckling load of plates with no cutout and full loading band 

with simply-clamped ends boundary conditions, we can use 

Euler's buckling formula with good approximation. 

 

Conclusion  

We can conclude from the results obtained in this research that: 

When the buckling phenomenon occurs, the capacity of the load 

toleration is considerably decreased.  The effect of the 

imperfection in the buckling load is considerable and as 

comparison between buckling load of two similar plates with 

different imperfection isn’t correct. The initial curvature (the 

maximum imperfection amplitude) of plate has no effect on 

post-buckling behavior of plate.  The results show that, as 

loading band increases, the ultimate buckling load also 

increases. The buckling load of the specimen with circle cut out 

is a little more than specimens with the square cut out with the 

equal surface area. Therefore, it is suggested that, if possible, 

the specimens with circular cut out are used for structures, 

because the producing of circular cut outs are very easier than 

square cut outs.  Numerical and experimental results are close to 

each other and their trend is completely the same. We can use 

Euler's critical buckling formula for calculation of nearly critical 

buckling load of perfect plates and full loading band with 

simply-clamped ends boundary conditions.  

 

 

 

)b( 

 

                                             (a) 

                                                           Imperfection 

 

  

 

 

Figure-8 

The calculation’s procedure of the amount of the preliminary bends through experimental test: (a) Before pressing the 

plate. (b) After pressing the plate 
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Figure-9 

A sample under imperfection’s measuring test 

 
Figure-10 

Load-displacement diagram for calculation of the imperfection (δ=0.36 mm) 
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Figure-11 

Load-displacement behavior of plates with circular cut out. 
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Figure-12 

The numerical and experimental comparison of the 

behavior of the buckling load vs. the loading band for 

specimen with a circular and square cut out 
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