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Abstract  

The mechanical tolerances are set to restrict too large dimensional and geometrical variation in a product. Tolerances have 

to be set in such a manner that functionality, manufacturability, costs and interchangeability are optimized and balanced 

between each other. The tolerances and available tolerance design techniques are represented in this text. Statistical 

tolerance design is emphasized because statistical behavior describes the nature of the manufacturing processes more 

realistically than worst-case methods. To this end, the Generalized Lambda Distribution (GLD) has been used for design of 

tolerance. This distribution is highly flexible and based on the available data, can identify and present the related probability 

distribution function and their statistics. After recognizing the underlying probability distribution function, the results can be 

employed for the design of tolerance.   
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Introduction 

Ever-increasing competition in global markets forces companies 

to manufacture higher-quality products at a faster rate and with 

lower costs than their competitors. The customer needs and 

wants are on the rise as well. Thus, product development teams 

have to rapidly design specifications for complex assemblies. In 

mass production, mechanical variation is a significant 

contributor to poor quality, increased costs, and wasted time. 

Mechanical variation in a product’s characteristics is caused by 

dimensional and geometrical variation in the components and by 

assembly variation. Further, component variation is brought 

about by manufacturing variation. Apart from influencing a 

product’s characteristics, component variation can considerably 

complicate the assembly of the components. In today’s 

competitive and global business environment, every component 

of a product must be individually replaceable. That is, a great 

number of parts can be made independent of mating parts, and 

any one part can be expected to mate with any other and still 

function properly. Complicated assembly produces scrap, 

consumes time, and deteriorates the ability to deliver, which in 

turn involves extra costs and decreases revenue
1
. 

 

The goal of tolerance design is to produce designs that could be 

assembled and function correctly despite variation. In parallel 

with tolerance design, a careful optimization of the nominal 

dimensions has to be emphasized in order to make the design as 

insensitive as possible to variation. By means of tolerance 

design techniques, the features and their tolerances that mostly 

affect the assembly requirements can be identified as tighter as 

possible, which improves performance and quality. On the other 

hand, the tolerances of the non-critical features can be loosened, 

which reduces costs and saves time. In addition, inexpensive 

tolerances can be tightened and expensive ones can be loosened. 

To design realistic tolerances, an active collaboration between 

design and manufacturing must take place sufficiently early in 

the design phase of a product. The acceptable and achievable 

tolerances have to be discussed then. 

 

We will consider assemblies of k components ( 2≥k ). The 

quality of the characteristic of component i that is of interest to 

the designer and is denoted by iX . This characteristic is 

assumed to be of the Nominal-the-Better type. The upper and 

lower specification limits of iX  are )( ii USLU  and 

)( ii LSLL ,respectively. The assembly quality characteristic of 

interest to the designer depended by X is function 

of kiX i ...,,2,1, = . That is, 

 

)...,,,( 21 kXXXfX =                        (1) 

At first, we will consider linear functions of iX  only: 

kXXXX ±±±= ...21                (2)

 
 

The upper and lower specifications are assumed to be given by 

the customer or determined by the designer based on the 

functional requirements specified by the customer.  

 

Tolerance is the difference between the upper and lower 

specification limits. Let the tolerance of 
iX  be 

,...,,2,1, kiTi = and let the tolerance of the assembly 

characteristic X be T. then, 
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kiLUT iii ...,,2,1, =−=
               (3)

 

 

where iL and iU  are the lower and upper specification limits of 

characteristic ,iX  respectively. In general, for any linear 

function kXXXX ±±±= ...21 , we have 

 

akaaa TTTT +++= ...21                (4)
 

 

This is called an additive relationship. The design engineer can 

allocate tolerances kTTT ...,,, 21  among the k components, for a 

given specified T, using this additive relationship. 

 

Probabilistic Relationship: Tolerance can be defined as being 

concerned either with physical and chemical properties, 

including size, weight, hardness, and composition of a part, or 

with the geometric characteristics, including dimension, shape, 

position, and surface finish of some part features. As it is 

impossible to produce many parts each to have exactly the same 

nominal value of a feature, deviations from the design nominal 

are unavoidable and hence allowed or tolerated. When a part 

deviates too much from the nominal, it fails to perform the 

intended function. To ward off possible functional failures, 

design engineers usually determine a maximum allowable 

deviation known as the tolerance, with upper and/or lower limits 

specified for each quality feature. 

 

As this relationship relies on the probabilistic properties of 

component and assembly feature, it is essential to making 

certain assumptions regarding these characteristics: i. iX  Are 

independent of each other. ii. Components are randomly 

assembled. iii. ),( 2

iiNX σµ≈ ; That is, the characteristic iX  

is normally distributed with a mean iµ  and a variance 
2

iσ  (this 

assumption will be relaxed later on). iv. The process that 

generate characteristic iX  is adjusted and controlled so that the 

mean of the distribution ,iX  ,iµ  is equal to the normal size of 

,iX  denoted by ,iB  which is the point of the tolerance region 

of .iX  That is  

2

)( ii
i

LU −
=µ

                              (5)

 

 

The standard deviation of the distribution of the characteristic 

,iX  generated by the process, is such that 99.73% of the 

characteristic iX  falls within the specification limits for .iX  

Based upon the property of normal distribution, this is 

represented as 

kiTLU iiii ...,,2,1,6 ===− σ
               (6)

 

 

Let iX  and iX  be the mean and variance of X respectively. 

As kXXXX ±±±= ...21 , 

kµµµµ ±±±= ...21                (7)
 

 

the iX ’s are independent of each other, 

22

2

2

1

2 ... kσσσσ +++=
             (8)

 

 

and considering  assumption 2 (above), the assembly 

characteristic X is also normally distributed. 

 

Let us assume that the 99.73% of all assemblies have 

characteristic X within the specification limits U and L. This 

yields an equation similar to equation (6). From equation (6) 

and (8), it can be derived that: 

ki
Ti

i ...,,2,1,
6

2

2 =







=σ

               

(9)
 

and 
22

2

2

1

2

6
...

666








++








+








=







 ki TTTT

            
(10) 

 

or 

22

2

2

1 ... pkppp TTTT +++=
             (11) 

 

The relation given in equation (11) is called a probabilistic 

relationship and provides a different means for allocating 

tolerance among components for a given assembly tolerance, T.  

 

For example, let us consider the assembly as having two 

components with the characteristics X1 and X2 respectively. If 

we assemble this two components, then assembly characteristic 

can be denoted by X, which is equal to: X=X1+X2 and 

Ta=Ta1+Ta2. Let’s presume now that the tolerance on X, which is 

Ta, is 0.001 inch, so Ta1+Ta2=0.001. 

 

There are two unknowns, Ta1, and Ta2, and only one equation. 

Let us assume that, in one example, the difficulty levels of 

maintaining both Ta1 and Ta2 are the same, hence the designer 

would like these tolerances to be equal. That is, Ta1=Ta2=0.0005.  

 

Now setting T=0.001 in equation (11) yields: 

001.02

2

2

1 =+ pp TT . If we introduce the same first relation 

used earlier Tp1=Tp2, then we 

have 00071.0
2

001.0
001.02 21

2

1 ===⇒= ppp TTT . In this 
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example, we set Ta=Tp=0.001 and solved for Ta1=Ta2=0.0005 

and Tp1=Tp2=0.00071. We saw that Tp1>Ta1 and Tp2>Ta2.  

 

Now in general we could have two relations between T and 

( kTTT ...,,, 21 ) as below: 

akaaa TTTT +++= ...21               (12)

  

22

2

2

1 ... pkppp TTTT +++=                  (13) 

 

Now let us go through the advantages and disadvantages of 

using the probabilistic relationship to allocate tolerances among 

the components
2
. 

 

Advantage of using a probabilistic relationship: It is a well-

established fact that manufacturing cost drops as the tolerance 

on the quality characteristic increases. Hence, the manufacturing 

cost of the components will decrease as a result of using the 

probabilistic relationship. 

 

Disadvantage of using a probabilistic relationship: If the 

probabilistic relationship is used, the actual maximum range of 

the clearance of the assemblies using these components will be: 

000142.000071.000071.021 =+=+ TT
 

 

The allowable range of the clearance of the assemblies, T, is 

0.001. This will obviously lead to rejection of the assemblies. In 

order to estimate the actual proportion of rejection, we need the 

probability distribution of the assembly characteristic, X, along 

with its mean and standard deviation.  

 

If the component characteristics are normally distributed, then 

the assembly characteristics is also normally distributed. Then 

by using equation 8 and 9, we can calculate the standard 

deviation and illustrate that the percentage rejection of the 

assemblies is less than 0.27%. So the percentage rejection of 

probabilistic relationship is greater than additive relationship. 
 

Probabilistic Relationship for non-normal 

component characteristics  
 

Two approaches can be basically considered in statistical 

tolerance design while dealing with conditions that process 

output holds an abnormal distribution. First, this issue is not that 

sensitive to cause trouble and consequently, tolerance design is 

being carried on as before. Second, this is not the case and an 

alternative should be taken into account. In many conditions, the 

above-mentioned subject does not have main concerns and is 

only taken into consideration to improve the quality control. But 

the distribution of output is the most leading indication in all 

organizations
2
. 

 

Yourstone and Zimmer
3
, studied the Skewed and Rocky pattern 

and found out that when the process output has a normal 

distribution but the Skewness is not fit, the efficiency of 

traditional control charts should be considered. Kittlitz
4
, used 

exponential distribution instead of normal distribution for some 

too skewed abnormal processes, with the fifth root in place of 

main data. 

 

Peam, Kotz and Johnson
5
, proposed a method highly applicable 

in an immense extent of distributions. This method does not 

need to know the skewness or rockiness of the distribution, but 

this method assumes that the output distribution is Gamma, that 

in many conditions are not true. 

 

In literature, several imputation techniques are described. 

Thakur and et al
6
 present the estimation of mean in presence of 

missing data under two-phase sampling scheme while the 

numbers of available observations are considered as random 

variable. Rekha R. C. and Vikas S
7
, have formulated an 

Inventory model for deteriorating items with Weibull 

distribution deterioration rate with two parameters. Roman, and 

et al
8
, have used Goodness-of-Fittest such as Anderson-Darling, 

Chi-square and Kolmogorov-Smirnov to judge the applicability 

of the distributions for modeling recorded Annual 1-Day 

Maximum Rainfall (ADMR) data. 

 

It is not appropriate to adopt traditional methods in abnormal 

distribution cases. Even when the normal test has been done 

from a distribution point of view and the result is confirmatory, 

the problem below still exists. 

 

In the above-mentioned test, when H0 (which is the assumption 

of being a normal distribution) is rejected, it implies that the 

above distribution is not normal, while if H0 is not rejected, it 

does not necessarily mean that H0 is correct. Furthermore, due 

to the likelihood test, plenty of data is required for a certain 

judgment about H0. Because of cost limitation or the lack of 

data as much required, the already mentioned tests are 

performed with less amount of data
9
. 

 

Gunter
10

 found some new cases in their research that in spite of 

having the same mean and standard deviation as well as close 

distributions, the nature of distributions differed from each 

other. 

 

Let the probability density function of Xi be )( ixf  with a mean 

iµ  and a variance
2

iσ . We assume that the range that contains 

100% or close to 100% of all possible values of Xi is .iig σ  It is 

still assumed
 
that

: 

iii gT σ=
                              (14) 

 

(ideally ).iii gT σ>>>>  This can be written as: 

i

i
i

g

T
=σ

                          
(15)
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Now, given that ,...21 kXXXX ±±±=  the distribution of 

X is approximately normal, because of the Central Limit 

Theorem. So, 

6
6

p

p

T
T =⇒= σσ

               
(16) 

 

assuming 99.73% coverage. Using the formula 
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The Generalized Lambda Distribution 

This distribution was first advanced by Tukey
11

, and later on 

was developed by Junior and Rosenblatt
12

. This distribution can 

precisely fit the ordinary distribution like normal, lognormal, 

Weibull, etc. The flexibility of this distribution exerts influences 

on estimating continual distributions and matching on histogram 

data and estimating the distribution type. As a matter of fact, it 

serves as a powerful device for research in different areas like 

estimating parameters, adjusting distributions on data and 

simulating research based on data production. For example, it is 

deployed in operational research, Ganeshan
13

, psychology 

meteorology, Ozturk, and Dale
14

, Delaney, and Vargha
15

, 

process statistic control, Fournier, and et al
9
, safety and fault 

tolerance Gawand, and et al
16

, and queue systems, Dengiz
17

. 

Zaven and et al
18

 studied generalized lambda family of 

distributions, generalized bootstrap and Monte Carlo, and fitted 

these distributions with the data. 

 

May researcher have been done their studies on tolerance design 

and/or GID
19-24

.  Bigerelle, and et al
25

, for example, use 

generalized lambda distribution and Bootstrap analysis to the 

prediction of fatigue lifetime and confidence intervals. In this 

research, the lambda distributions associated with the Bootstrap 

technique were first employed to model the Paris coefficients 

PDF and turned out to be able to estimate accurately the 

experimental values. Then, lambda distributions were used to 

model the PDF lifetime of a basic structure under fatigue 

loading. Acar, and et al
26

 applied Estimation using Dimension 

Reduction and Extended Generalized Lambda Distribution to 

estimate reliability. They presented an analytical approach for 

systems reliability. Given an N-dimensional, differentiable, uni-

modal performance function along with the statistical properties 

of the underlying random variables, the proposed approach 

applies the univariate dimension-reduction technique to the 

estimation of the five primary statistical moments, which are in 

turn used for figuring out the unknown parameters in the 

extended generalized lambda distribution for probability 

distribution fitting of the performance function.      

 

The characterizing of generalized lambda distribution has been 

studied by Karvanen, and Nuutinen
27

. It has been introduced as 

a reversed Probability Cumulative Distribution Function Q as 

below: 

2

14321

43 1

λ
λλλλλ

λλ
)(

),,,,(
yy

yQx
−−

+==

           

(18) 

where y implies the relative Density Probability in point x and it 

is obvious that its extent would fall between zero and one. λ1 

and λ2  are the co efficiencies related to the measurement and 

place, respectively and λ3, λ4 referred to the prominence and 

suspense of the distribution. Some of the capabilities of this 

distribution for different distributions have been displayed in 

figures 1-4
28

. 

 

 
Figure-1 

GLD (0.0069, -0.0011, -0.0000, -0.0011) 

Negative exponential distribution with parameter 1 

 
Figure-2 

GLD (0, 0.1975, 0.1349, 0.1349) 

Standard normal distribution 
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Figure-3 

GLD (0, 5, 1.9693, 0.4495, 0.4495) 

Beta distribution with parameters (1, 1) 

 
Figure-4 

GLD (0, 1, 1.4, 1.6) 

d: A distribution similar to a special U distribution 

 

The generalized lambda distribution is a distribution that can 

organize, simulate and estimate all distributions through 

changing the parameters. It is flexible enough to exactly 

simulate and accordingly the quality control operation can be 

carefully done. This task is done by access to 100 data. 

 

Fitting a probability distribution to data is an important task in 

any statistical data analysis. The data to be modeled may consist 

of observed events, such as quality characteristic of 

components. When fitting data, one typically first selects a 

general class, or family, of distributions and then finds values 

for the distributional parameters that best match the observed 

data.  

 

As it was seen, by changing the amounts of λ, the GLD has been 

in distinct forms and matched on the distributions. The details of 

the specifications of this distribution, the applications and the 

way of computing the parameters have been precisely explained 

by Karian and Dudewicz
28

. 

Eventually, Tarsitano
29

, raised the number of the parameters of 

this distribution up to 5 and studied the characteristics. This is 

done to increase the capability and exactness to fit the panel 

data distribution. The distribution of a new five parameters is an 

accumulated opposite as below: 

101 53

421
≤≤−−+= yyyyX ,)(),(

λλ λλλλ
          

 (19) 

 

In this distribution, λ1 is a place indicator, λ2, λ3 are measuring 

indicators and λ4 and λ5 are concerned with the distribution 

feature. The two measuring indicators display different weights 

for the distribution extent and provide this place for a new 

distribution to be well- adjusted with the data without 

symmetric extents are well – matched.  

The PDF of this distribution is: 

1

53

1

42

54 1
−− −+== λλ λλλλ )()( yy

dy

dx
yf

           

(20) 

 

The m
th

 moment of this distribution can be computed by using 

the relations (19) and (20) and also the total computations of the 

moments are as follow:  

∫

∫

−−+=

==
+∞

∞−

1

0

421

53 1 dyyy

dxxfXXEM

m

mm

m

))((

)()(

λλ λλλ

            

(21) 

 

Estimation the GLD parameters 

Generalized lambda distribution (GLD) is a distribution that can 

be used for testing and fitting the data to well-known 

distributions. Since the GLD is defined by its quintile function, 

it can provide a simple and effective algorithm for generating 

random variations. 

 

Fitting a probability distribution to data is an important task in 

any statistical data analysis. Several methods for estimating the 

parameters of the GLD, such as: Percentile Matching (PM), the 

moment matching (MM), Probability-Weighted Moment 

(PWM), Minimum Cramér-Von Mises (MCM), Maximum 

Likelihood (ML), Pseudo Least Squares (PLS), Downhill 

simplex method, and starship methods have been presented in 

the literature (Tarsitano
29

). Fournier and et al
9
, for example, 

developed a new method for estimating the parameters of a 

GLD based on the minimization of the Kolmogorov–Smirnov 

distance in a two-dimension space.  

 

In this research, the moment matching method is being briefly 

reviewed. The moment-matching method, described in this 

paper, was proposed in Ramberg and Schmeiser
30

. The method 

can be described in a straightforward manner as follows: given 

the GLD distribution with quartile function Q(u), find 

parameters 1λ , 2λ , 3λ , 4λ  and 5λ  so that the mean µ  and 
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variance 
2σ

 

of the GLD match the corresponding mean 
*µ , 

and variance 
2*)(σ  of the sample (i.e., the first five moments 

of the theoretical GLD match those of the data). More formally, 

if such a method denotes the probability density function of the 

random variable X with distribution 4, we compute the 

parameters λ  such that satisfying equations 21. Finally, after 

determining the 5 parameters of the distribution, it can be 

demonstrated that the mean and variance of GLD can be 

calculated as below:    

)1()1(
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   (23)        

 

By using this method, when we can collect data from production 

line, and then calculate the mean, variance, and standard 

deviation of the underlying distribution of the qualitative 

specification, and finally we can design the tolerance. 

 

Methodology and Results 

In this section, we consider the assembly s having two 

components with the qualitative specification of X1 and X2, 

respectively. Since the real data is not available, and data 

gathering requires time and cost, in this research we produce 

and use 99 stochastic numbers for each part. We assume that 

each number is the qualitative specification of parts 1 and 2, 

respectively. Then, we classified the derived numbers in the 

frequency tables, and calculate 1 to 5
th

 experimental moment of 

GLD by using the following equation (tables 1 and 2). 

∑ =
=

k

i iim fxM
1

                (24) 

 

Where, Mm = mth moment, xi = midpoint or mean of ith cell 

interval, i=1, 2, …, k, fi = frequency of ith cell interval, i=1, 2, 

…, k, k = number of cell interval, 

 

Table-1 

Frequency table and experimental moment for data of pare 1 

Cell interval
 

if  ix  ii xf  
2

ii xf  
3

ii xf  
4

ii xf  
5

ii xf  

11.950  --  11.965 16 11.958 191.32 2287.7089 27355.27917 327100.7507 3911307.226 

11.965  --11.979 15 11.972 179.58 2149.93176 25738.98303 308147.1048 3689137.139 

11.979  --  11.993 13 11.986 155.818 1867.634548 22385.46769 268312.2158 3215990.218 

11.993  --  12.007 13 12.000 156 1872 22464 269568 3234816 

12.007  --  12.021 20 12.014 240.28 2886.72392 34681.10117 416658.7495 5005738.217 

12.021  --  12.035 13 12.028 156.364 1880.746192 22621.6152 272092.7876 3272732.049 

12.035  --  12.050 9 12.043 108.3825 1305.196256 15717.82592 189281.9186 2279427.505 

Sum 99  1187.7445 14249.94158 170964.2722 2051161.527 24609148.35 

 

Table-2 

Frequency table and experimental moment for data of pare 2 

Category if  ix  ii xf  
2

ii xf  
3

ii xf  
4

ii xf  
5

ii xf  

8.012  --  7.964 13 7.988 103.844 829.505872 6626.092906 52929.23013 422798.6903 

7.964  --  7.978 17 7.971 135.507 1080.126297 8609.686713 68627.81279 547032.2958 

7.978  --  7.992 15 7.985 119.775 956.403375 7636.880949 60980.49438 486929.2476 

7.992  --  8.006 12 7.999 95.988 767.808012 6141.696288 49127.42861 392970.3014 

8.006  --  8.02 18 8.013 144.234 1155.747042 9261.001048 74208.40139 594631.9204 

8.02  --  8.034 11 8.027 88.297 708.760019 5689.216673 45667.34223 366571.7561 

8.034  --  8.048 13 8.041 104.533 840.549853 6758.861368 54348.00426 437012.3023 

Sum 99  792.178 6338.90047 50723.43594 405888.7138 3247946.514 
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Now we can use the equation (21) and establish 5 equations and 

5 variables 1λ  to 5λ . These equations are then equal to the 

respective sum of relative column in tables 1 and 2. The 

equations are classified as equations 25 and 26 as bellow:  

1187.7445))1((
1

0
421

53 =−−+∫ dyyy
λλ λλλ

 

814249.9415))1((
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2

421
53 =−−+∫ dyyy

λλ λλλ
 

2170964.272))1((
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3

421
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λλ λλλ
      (25)  
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1
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Now the Excell and MATLAB software programs can be 

deployed to calculate GLD parameters. The results of equations 

(25) are as follow: 

    

1962.52,0851.2,1856.2,0029.4,7436.10 54321 ===== λλλλλ
 
(27) 

The results of equations (26) are as below: 

5099.2,3945.4,2331.0,7886.6,2427.1 54321 =−==== λλλλλ  
 (28)

 
Consequently, the quartile cumulative distribution function of 

the specification of components 1 and 2 in the study equals: 

 

For part No. 1 
1962.521856.2

)1(0851.20029.47436.10),( yyyX −−+=λ
, 

 

For part No. 2 
5099.22331.0 )1(3945.47886.62427.1),( yyyX −++=λ  

 

Goodness of fitness test: Solving non-linear equations usually 

yields more than one series of answers, so it is quite necessary 

to run goodness of fitness test to attain the acceptable answer. 

To this end, Chi-square statistics was deployed: 

∑
=

−
=

k

i i

ii

E

EO

1

2
2

0

)(
χ

             

 (29) 

 

H0: GLD with the obtained parameters fits the data. H1: GLD 

with the obtained parameters does not fit the data. H0 is rejected 

if 
2

1,

2

0 −−> ikαχχ  where α is the level of significance of the test, 

K, the number of sets and I, the number of distribution 

parameters.  

 

To carry out goodness of fit test for each part of components, 

first the expected values (Ei) are obtained. For each set i
th

, the 

cumulative amount of relative frequency is positioned in the 

distribution relationship; hence, the value of the mean of the set 

in question is calculated, which is the very Ei.  Similarly, the 

observed value is the mean of the data set. Chi-square statistic 

can test with K-6 degrees of freedom, where K is the number of 

class intervals. Table 5 presents the hypothesis testing of the 

research data.  

 

Table-5 

The goodness of fit test for part 1 

i

ii

E

EO
2)( −

 (Oi-Ei)
2 

Expected 

Observation Value 

Ei 

 

Cumulative Relative 

Frequency  

Yi 

Observation 

value  

Oi 

Class 

Interval 

0.1201 1.140 10.818 0.1616 11.958 1 

0.1224 1.150 10.808 0.1515 11.972 2 

0.1326 1.196 10.790 0.1313 11.986 3 

0.1357 1.210 10.790 0.1313 12.000 4 

0.1215 1.149 10.865 0.2020 12.014 5 

0.1420 1.238 10.790 0.1313 12.028 6 

0.1552 1.293 10.750 0.0909 12.043 7 

0.9295 Total 

 

Table-5 
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The goodness of fit test for part 2 

i

ii

E

EO
2)( −

 (Oi-Ei)
2 

Expected Observation 

Value Ei 

 

Cumulative 

Relative 

Frequency  

Yi 

Observation 

value  

Oi 

Class 

Interval 

0.0380 0.570 8.558 0.1313 7.988 1 

0.0310 0.513 8.484 0.1717 7.971 2 

0.0342 0.540 8.525 0.1515 7.985 3 

0.0382 0.572 8.571 0.1212 7.999 4 

0.0237 0.448 8.461 0.1819 8.013 5 

0.0356 0.553 8.580 0.1111 8.027 6 

0.0312 0.517 8.558 0.1313 8.041 7 

0.2319 Total 

 

With respect to the relationship for part 1 

),84.3()9295.0( 2

1,05.0

2

0 χχ <  and for part 2 

),84.3()2319.0( 2

1,05.0

2

0 χχ <
 

we can say that for both 

components the derived Generalized Lambda Distribution fits 

the data. 

 

Design of tolerance 

In this section, for designing tolerance we must first determine 

the mean and standard deviation for both components. 

For part 1 from equations 22 and 23 we have:  
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so we have 

022.000049.01 ==σ
 and for part 2 from equations 22 and 23 we have:  
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so we have 

021.0000442.02 ==σ  

 

Now we can determine tolerance of components, using equation 

15 as bellow: 

iii gT σ=
 

 

For part 1  

132.0

022.061

=

×=T

 

 

And for part 2 

126.0

021.062

=

×=T

 

By considering this tolerance, now to specify part 1 we can 

have: 

Specification part 1= 066.012± andd specification part 2 

= 052.08±  

 

 If it is assumed that these two parts are assembled together, by 

applying the Equation (11), the sum of their tolerance equals:  

084.0

)052.0()066.0( 22
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2
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+=

+= ppp TTT

 

 



Research Journal of Recent Sciences ______________________________________________________________ ISSN 2277-2502 

Vol. 2(11), 55-64, November (2013)                            Res. J. Recent Sci. 

   

International Science Congress Association  63 

While if this is the sum of tolerance in question and is allocated 

to each part with an assumed proportion of 50%, for instance, 

the tolerance of each part amounts to 0.042, the proposed 

method yields tolerance of 0.066 and 0.052, respectively. 

However, if the assumptions 1, 2, 3, and 5 of the probabilistic 

relationship section are true, which is often the case, it can be 

expected that by considering the proposed tolerance, it is easier 

to produce such parts. 

 

Conclusion 

Tolerance is one of the critical parameters in designing 

components specifications and also of crucial importance for the 

customer satisfaction. Therefore, it is of special significance to 

determine it. In some cases the linear dimension does not have 

to be tight tolerance but the form does. The most common 

reason is to ensure the functionality. This way the dimensional 

tolerance does not have to be unnecessarily tight, which would 

increase costs. The form tolerances may be achieved more 

easily or at lower costs.  

 

In this research we introduced an alternative to the design of 

tolerance using a statistical method. When the distribution of 

products is unknown, predicting the distribution of specification 

and their parameters need cost and time. Instead, the generalized 

lambda distribution can be deployed, which applies to every 

known or unknown distribution. After estimating the parameters 

of the distribution, tolerance can be calculated in the next step. 

So, we deployed a procedure that allows us to compute 

parameters 1λ , 2λ , 3λ , 4λ  and 5λ  of GLD. While 

approximation errors may have an impact on the quality of the 

fitted distribution to some degree, the fact remains that even if 

the five moments are matched exactly, one cannot be assured 

that the resulting theoretical distribution will perfectly match the 

empirical distribution
9
. The quality of the fit can be ascertained 

only through a goodness-of-fit test.  

 

To compute and estimate the parameters, various methods can 

be thought of such as: Percentile Matching (PM), the moment 

matching (MM), Probability-Weighted Moment (PWM), 

Minimum Cramér-Von Mises (MCM), Maximum Likelihood 

(ML), Pseudo Least Squares (PLS), Downhill simplex method, 

and starship methods, In this study, due to the limited access to 

an appropriate software program, Moment Matching (MM) 

Estimates were employed without considering the target 

function. But for the future research, Maximum likelihood can 

be utilized.  Also, Simplex method can be used for solving 

equations and estimating parameters. Since the Generalized 

Lambda Distribution is still an innovative approach, it is 

necessary to investigate different aspects of this distribution. 
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