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Abstract

In this article, the problem of the spread of a non-fatal disease in a population which is assumed to have constant size over
the period of the epidemic is considered. Mathematical modeling of the problem leads to a system of nonlinear ordinary
differential equations. Homotopy analysis method is employed to solve this system of nonlinear ordinary differential

equations.
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Introduction

In 1992, Liao"* proposed a new analytical technique; namely
the Homotopy Analysis Method (HAM) based on homotopy of
topology. However, in Liao's PhD dissertation', he did not

introduce the auxiliary parameter 71, but simply followed the
traditional concept of homotopy to construct the following one-
parameter family of equations

(1= p)L@)+ pN(u) =0, M

where L is an auxiliary linear operator, N is a nonlinear
operator related to the original nonlinear problem N(u) =0
and p

parameters family of equations was proposed to avoid
divergence of solution by introducing an auxiliary parameter

is the embedding parameter. An improved two

(1- p)L(u —u,) = ipN(u). )

where u,, is an initial guess. Using the definition of Taylor
series with respect to the embedding parameter p (which is a
power series of p ), Liao gave a general equations for high-

order approximations. He™

family of equations

(1= p)L@)+ pN(u) =0, 3)

constructed the one-parameter

which is exactly the same as Liao's early one-parameter family
equation (1), and is a special case of Liao's modified two-

parameter equation (2) when /i =—1.
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The problem of spreading of a non-fatal disease in a population
which is assumed to have constant size over the period of the
epidemic is considered in’.

At time t suppose the population consist of

X(t) susceptible: those so far uninfected and therefore liable to
infection; Y(#) infective: those who have the disease and are

still at large; Z(t ) who are isolated, or who have recovered and
are therefore immune.

Assume there is a steady constant rate between susceptible and
infective and that a constant proportion of these constant result

in transmission. Then in time Of , d of the susceptible become
infective, where

ox = —fxyodt 4)

and ﬂ is a positive constant. If ¥ >0 is the rate at which
current infective become isolated, then

0y = Bxy ot — yyor. 5)
The number of new isolates % is given by
0z = yyot. (©6)

Now let Ot — oo. Then the following system determines the
progress of the disease:
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dx

o Bxy

d

Lopy-mw
dt

d_z =

drt

with initial conditions,

x(0)=N,, y0O) =N, z(0O)=N;,.

Homotopy Analysis Method (HAM)

In this paper we apply the homotopy analysis method to the
problem. Consider the following equation:

N[&(1)]=0

where N is a nonlinear operator, ¢ denotes the independent
variable, 2J(f) is an unknown function. The so-called HAM's
zero-order deformation® can be obtained

(1— p)LLo(1; p) = 8" (1)] = phH (1)N[(1)] ®)

where p€[0,1] is the embedding parameter, 7 # 0 is a
nonzero auxiliary parameter, H () # O is an auxiliary function,
L is an auxiliary linear operator, 19(50] (t) is an initial guess of
(1), ¢(l‘; p) is an unknown function. When p =0 and
p =1, then

9(1:0) = 4 (1), P(1;1) = B(0),

respectively. Thus, as p increases from O to 1, the solution
@(t; p) varies from the initial guess 19([,0](2‘) to the solution

V(1) . Expanding @(t; p) in Taylor series with respect to p ,
one has

ot p) = 1)+ > A0 p’, ©)

k=1

where
1 9% p)

(k] _
% (t)_k! op*

(10)

p=0
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If the auxiliary linear operator, the initial guess, the auxiliary
parameter /1, and the auxiliary function are properly chosen, the
series (9) converges at p = 1, thus

() = () + Y @), (11)
k=1

which must be one of the solutions of the original nonlinear
equation, as proved by Liao 8.

As pointed by Liao’, the auxiliary parameter 7 can be
employed to adjust the convergence region of homotopy
analysis solution. In general, by means of the so-called 7i-
curve, it is straightforward to choose an appropriate range for 7
which ensures the convergence of the solution series.

According to the equation (10), the governing equation can be
deduced from the zero-order deformation equation (8). Define
the vector

q 1.0l (1] [m]

g, =040, 9" 0}

Differentiating equation (8) k times with respect to the
embedding parameter p and then setting p =0 and finally
dividing them by k!, we have the so-called &k th-order
deformation equation

L () - 8" (O] = hH ()R, (B.)), (12)
where

R 1 9"'Nig(z; p)]
R.(_) = : 13
(D) (k—1)! Pt ‘pzo (13)
and

[0, k<1, )
Y=V kst 14

It should be emphasized that ﬂék](t) for k 21 is governed by

the linear equation (10) with the linear boundary conditions that
comes from the original problem, which can be solved easily by
symbolic computation software such as Matlab, Maple or
Mathematica. In this paper all calculations were accomplished
using Maple software where the long format and the double
precision have been used for high accuracy results.

Solution of the epidemic model by HAM

By applying inverse of the operator ¢ () | which is integration
dt
operator J'(.) 4: 1o each equations in the system (7) we derive
0
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x(t) = x(0) = [ Be(n) y(r)dr,
¥(1) = y(O) + [ [Br(0) (D) = wn)ldr,

5)

2(t) = z(0) + jo’;y(t)dz.

X, (t), Yo (t) and z, (t) are the initial guesses of
x(l‘ ), y(l‘ ) and z(t ) respectively.

Let

According to equation (8), the HAM's zeroth-order deformation
for equation (15) will be

(=X (. p)=x,(0) = hp(x(z,p)—x(o>+ B . ) o, p)at ) (16)
(1= ), p)= 3 0) = i ¥ (. )= 50)= [ BLX (. )Y o po)= ¥ o p ) )
(l—p)(Z(f,p)—Zo(f))=hp(Z(t p)-20)-[#(.p dt)

For p=0 and p =1, we can write
X(1,0)= x,(r), X (£,1) = x(¢)
Y(2,0)= y, (1), Y(,1) = y(t) (17)
Z(2,0) = z,(c). Z(2,1) = z(r)

Considering Maclaurin  series of X (t, p), Y (t, p) and
Z (t , p) corresponding to P, one has

[k]
X(1,p) = x,(0)+ > 2

oo
k=1 k'

[k]
t
Y(t, p) = y,(t) Zy° ®) (18)
k=1
+oo _[k]
Zy (1)
Z(t,p)= Zo(t)"'zo—pk
o k!
which
k k k
) = d );(1;:17) YA @) = J S(t/:p) , z([]k](l‘)=a Z(fk,P) . (19)
/g p=0 P p=0 ap p=0
Define
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[k] [k]
()= ()=20D )=

k! k!

zy (1)

r (20)

If p=1, using equation (18), then

x(t) = x

Zxk , (1) = Zyk , (1) = z izk (t) (21)

Define the vectors

X, ={xo(t),xl(t),xz(t),...,xk(t)}
Yo = 0@ (0. 3, (0).... v, (0}
7, = {Zo(l‘), Zl(t), ZQ(t),...,zk(t)}

Thus we obtain the k th-order deformation equation

(22)

L[x, (t)—}(kxk_l (f)] =hR, (X,_,),

L[yk(t)_;{kyk—l(t)] =hR, (¥, ) (23)

Lz, (t)—}(kzk_l (f)] =hR,(Z,))

from equation (13) and (16), we have

R(%_)=x_, +Iﬁ{zx Vi1 :|
(24)

R =yl j{ Bl ) mx)} (-0

( ) kao( ))

R(Z ) =7 (t)_J.(;Wk—l (t)d— (Zo (t)_lk %y (1))

Considering equation (14), (16), (23) and (24) we can find the
recursive expression of epidemic model

% <r>=m,l<r>+h[xk,l<r)+ j;ﬁ@(z)yA,l,xz)}dr—(%(r)—m(r»}

)= 20,0 h[y HZ b0 } (- ,wo())j

al)= 20+ 50 [ (a0 )

(25)

Convergence Theorem: Theorem 3.1 If the solution series in
equation (21) converge, where X, (t), Vi (l‘) and zk(l‘) is

governed by equation (23) under definition (14) and (24), they
must be the solution of equation (15).
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Proof. If the series

gxk (t), gyk (t) gzk (t)

converge, we can write

=250 Y(e)=X 5. 0) Z(t)= 32 () (26)
k=0 k=0 k=0
and they hold
lim x, (t)=0, lim y, (t)=o0, lim z, (t)=0. @27)
Using the definition of },, we have
Z[xk — XX )] xl"’(xz_x|)+(x3_xz)+"‘+(x,,_x/,7|)=x,.(t)s (28)
Z[)k — X Vi )] Y +(y2 _y|)+(y3 _y2)+"'+(yn _yu—l)z y,,(t),
Z[Zk Zkzk 1 ] L+ (Z _Z])+(ZJ_ZZ)+“.+(ZH_Zuf])=Zu(t)‘
which gives us, according to (27)
Z[xk — XX 1( )] = /11_{2 X (t)= 0,
4o
Z[)’k(t)_;(k)’k—l(t)]=%l_rg)’k(t)=0’ 29)
k=1

+o0

Z[Zk (t)_ZkZJH (t)1= ]1(1_{2 Z; (r)=o0.

k=1

Furthermore, using the above expression and the definition of
L , we have

ZL[xk

Lz[xk AR =AY )] 0,

— X X- 1

)_/’{kyk—l(t)]zo’ (30)

ZL[ Vi (t

)_/’{kyk—l (t)] = LZ[)’k (t

Sz ()= 25,1 =LY L2, ()~ 2220, (1= 0.
k=1 k=1

From the above expression and equation (23), we obtain
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ZL[xk ~2xa =13 R.(G) =0,
k=1

Ly ()= 2y 1 =23 R, (5,.) =0, 31)
k=1 k=1
ZL[Zk X ]—th (Z,.)=0

k=1
which gives, since % # 0, that
dR.(%.)=0, YR (5.)=0, YR (Z_)=0. (32)
k=1 k=1 k=1
From (24), we have
S =55 04[] Selnr 0]-(50-250)|

(33)

=S 0+ A S -5

‘me +I/3{Zx jZ(;y, }dt %t

+L,BX (£)dt - x,(¢)

From equations (32) and (33) we have

X (1) = x,(6)= [ X () ()

Using similar procedure we obtain

Y ()= 3o 1)+ [ (BX () (1) = ()t

206) = x,(0)+ [ ()t

Therefore, according to the above two equations, X (t ), (t) and

V4 (t) must be exact solution of equation (15).

Numerical example

For numerical results the following values, for parameters, are
considered: N, = 20, Initial population of Xx(f), who are

susceptible, N, =15, Initial population of y(f), who are
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infective, N, =10, Initial population of z(f), who are
immune, ,5 =0.01, Rate of change of susceptible to infective

population, ¥ = 0.02, Rate of change of infective to immune
population.

Figures 1-3 show the fi-curves obtained from the 12th-order,
8th-order and 6th-order HAM approximation solutions of
equation (21). From these figures, the valid regions of 7
correspond to the line segments nearly parallel to the horizontal
axis.

204

Figure-1
The 7 -curve of x(1) given by (21) Dotted line: 12th-order

approximation; Dashed line: 8th-order approximation;
Solid line: 6th-order
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Figure-2
The 7 -curve of Y(1) given by (21) Dotted line: 12th-order

approximation; Dashed line: 8th-order approximation;
Solid line: 6th-order
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8 3 it
B
Figure-3
The 7i-curve of Z(1) given by (21) Dotted line: 12th-order

approximation; Dashed line: 8th-order approximation;
Solid line: 6th-order
These results according to some values of 7 (the abscissa of
intersection points in figures 1-3) are plotted in figures 4-6. As
the plots show while the number of susceptible increases the
population of who are infective decreases in the period of the

epidemic, meanwhile the number of immune population
increases.
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Figure-4
Plot of twelve terms approximation for x(f) when
h =-1.0053219
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Plot of twelve terms approximation for y(¢) when
h =-1.0047109
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Figure-6
Plot of twelve terms approximation for Z(f) when
h =-1.0639236
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Conclusion

Homotopy analysis method is known to be a powerful device
for solving many functional equations such as ordinary, partial
differential equations, integral equations and so many other
equations. In this article, we used homotopy analysis method for
solving a system of differential equation which describe SIR

model for an epidemic disease. Using the concept of h-curve,

we found the convegence aera for the series solution of the
problem. Numerical examples also provided to show the ability
and efficiency of the method.
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