International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Evaluation of Mbeya based organic fertiliser on maize yield and yield components in Malawi

Author Affiliations

  • 1Ministry of Agriculture, Chitedze Agricultural Research Station Box 158 Lilongwe, Malawi

Res. J. Recent Sci., Volume 13, Issue (1), Pages 1-14, January,2 (2024)

Abstract

Recent boom in organic business in the name of Mbeya manure fertilizer has taken shape in commercialisation without ATCC approval as several implications were at stake. Laboratory and fields experiments were, therefore, conducted to ascertain the quality of the products with and without modifications. The original products, as proclaimed by suppliers, were evaluated against the control treatment of inorganic fertilizer and the modified products by inclusion of specific microorganisms in solubilisation of fixed nutrients and oxidation of ammonia and nitrite. Field layout followed Completely Randomized Block Design with three replications and 5 treatments viz Modified Funani Mbeya fertilizer, Modified Kambeu Mbeya fertilizer, Original Funani Mbeya fertilizer, Original Kambeu Mbeya fertilizer and the recommended inorganic fertilizer for Maize. Besides assessing the grain yield, biomass and nutrient bioavailability, effect of the organic fertiliser on biostimulation was also studied in the rhizospheric soil. Results showed that that there was no significant differences on grain yield and its components between Mbeya based organic fertilisers and inorganic fertilisers. However, maize yield and some parameters (environmental and nutrient content) was higher in modified organic fertiliser.

References

  1. Kabwe G, Bigsby HR. (2016)., Why is adoption of agroforestry stymied in Zambia ? Perspectives from the ground-up Why is adoption of agroforestry stymied in Zambia ?., Perspectives from the ground-up. doi:10.5897/AJAR2016.10952
  2. Wang, N., Ding, L. J., Xu, H. J., Li, H. B., Su, J. Q., & Zhu, Y. G. (2015)., Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils., FEMS Microbiology Ecology, 91(3), fiv013.
  3. Singh, B., Singh, B. P., & Cowie, A. L. (2010)., Characterisation and evaluation of biochars for their application as a soil amendment., Soil Research, 48(7), 516-525.
  4. Feng, X., Ling, N., Chen, H., Zhu, C., Duan, Y., Peng, C., ... & Guo, S. (2016)., Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments., Scientific Reports, 6(1), 24559.
  5. Snapp, S. S. (1998)., Soil nutrient status of smallholder farms in Malawi., Communications in Soil Science and Plant Analysis, 29(17-18), 2571-2588.
  6. Ten Berge, H. F., Hijbeek, R., Van Loon, M. P., Rurinda, J., Tesfaye, K., Zingore, S., ... & van Ittersum, M. K. (2019)., Maize crop nutrient input requirements for food security in sub-Saharan Africa., Global Food Security, 23, 9-21.
  7. Baghdadi, A., Halim, R. A., Ghasemzadeh, A., Ramlan, M. F., & Sakimin, S. Z. (2018)., Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean., PeerJ, 6, e5280.
  8. Ahemad M, Kibret M. (2014)., Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective., J King Saud Univ - Sci. 26(1). doi:10.1016/j.jksus.2013.05.001
  9. Geng, Y., Cao, G., Wang, L., & Wang, S. (2019)., Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution., PloS one, 14(7), e0219512.
  10. Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009)., The role of microbial signals in plant growth and development., Plant signaling & behavior, 4(8), 701-712.
  11. Mwangi, A. M. K., Kahangi, E. M., Ateka, E., & Onguso, J. (2014)., Integration of commercial microbiological products into soil fertility practices as a potential option for acclimatization and growth of TC banana in Kenya.,
  12. Kanyama-Phiri, G. Y. (2005)., Best-bet soil fertility management options: The case of Malawi., In African Crop Science Conference Proceedings, Vol. 7, No. pt. 03 of 03, pp. 1039-1048.
  13. Dubey, A., & Dubey, D. (2010)., Evaluation of cost effective organic fertilizers.,
  14. Jitendra Malviya, J. M., Kiran Singh, K. S., & Vaibhavi Joshi, V. J. (2012)., Effect of phosphate solubilizing fungi on growth and nutrient uptake of ground nut (Arachis hypogaea) plants.,
  15. Watts DB, Torbert HA, Feng Y, Prior SA. (2010)., Soil Microbial Community Dynamics as Influenced by Composted Dairy Manure ., Soil Properties, and Landscape Position. 175(10).
  16. Tortella, G. R., Rubilar, O., Cea, M., Wulff, C., Martínez, O., & Diez, M. C. (2010)., Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination., Journal of soil science and plant nutrition, 10(4), 464-475.
  17. Macouzet, M. (2016)., Critical aspects in the conception and production of microbial based plant biostimulants (MBPB)., Probiotic Intelligentsia, 5, 29-38.
  18. Oliveira ALM, Santos OJAP, Marcelino PRF, Milani KML. (2017)., Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input., 8(September):1-18. doi:10.3389/fmicb.2017.01873
  19. Carlson, R. R., Vidaver, A. K., Wysong, D. S., & Riesselman, J. H. (1979)., A pressure injection device for inoculation of maize with bacterial phytopathogens., Plant Dis. Rep, 63, 736-738.
  20. Korir H, Mungai NW, Thuita M, Hamba Y, Masso C. (2017)., Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil., 8(February):1-10. doi:10.3389/fpls.2017.00141
  21. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. (2017)., Plant growth promotion by phosphate solubilizing fungi – current perspective., 0340 (June). doi:10.1080/03650340902806469
  22. Iqbal Hussain, M., Naeem Asghar, H., Javed Akhtar, M., & Arshad, M. (2013)., Impact of phosphate solubilizing bacteria on growth and yield of maize., Soil & Environment, 32(1).
  23. Barary, M., Kordi, S., Rafie, M., & Mehrabi, A. A. (2015)., Effect of Harvesting Time on Grain Yield, Yield Components, and Some Qualitative Properties of Four Maize Hybirds., International Journal of Agricultural and Food Research, 3(4).
  24. Phiri AT, Malola K, Mwafulirwa S, Simwaka P. (2020)., Improving Maize Productivity under Rain-Fed Conditions through the Combined Use of Inorganic and Organic Fertilizer in Malawi., 4(2):22-27. doi:10.9734/APRJ/2020/v4i230082
  25. Lunze, L., Abang, M. M., Buruchara, R. A., Ugen, M. A., Nabahungu, N. L., Rachier, G. O., ... & Rao, I. M. (2012)., Integrated soil fertility management in bean-based cropping systems of Eastern, Central and Southern Africa., INTECH Open Access Publisher.
  26. Ibeawuchi, I. I., Obiefuna, J. C., Ofor, M. O., Ihem, E. E., Nwosu, F. O., Nkwocha, V. I., & Ezeibekwe, I. O. (2009)., Constraints of resource poor farmers and causes of low crop productivity in a changing environment., Researcher, 1(6).
  27. Eze, S., Dougill, A. J., Banwart, S. A., Hermans, T. D., Ligowe, I. S., & Thierfelder, C. (2020)., Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems., Soil and tillage Research, 201, 104639.
  28. Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., ... & Ullah, S. (2017)., Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties., Journal of soil science and plant nutrition, 17(1), 22-32.
  29. Matiru, V. N., & Dakora, F. D. (2004)., Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops., African Journal of Biotechnology, 3(1), 1-7.
  30. Suseelendra Desai (2012)., Potential microbial candidate strains for management of nutrient requirements of crops., African J Microbiol Res. 6(17):3924-3931.
  31. Stella, M., & Halimi, M. S. (2015)., Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes., J Trop Agric Food Sci, 43(1), 41-53.
  32. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. (2014)., Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity., Microb Cell Fact., 13(1).
  33. Beyranvand, H., Farnia, A., Nakhjavan, S. H., & Shaban, M. (2013)., Response of yield and yield components of maize (Zea mayz L.) to different bio fertilizers., International journal of Advanced Biological and Biomedical Research, 1(9), 1068-1077.
  34. Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014)., Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013)., Plant and soil, 378, 1-33.
  35. Hussain, A., Arshad, M., Zahir, Z. A., & Asghar, M. (2015)., Prospects of zinc solubilizing bacteria for enhancing growth of maize., Pakistan journal of agricultural sciences, 52(4).
  36. Moraditochaee, M., Amiri, E., & Azarpour, E. (2012)., Effects zeolite and their integrated bio-fertilizer and different levels of chemical nitrogen fertilizer under irrigation management on yield and yield components of peanut (Arachis hypogaea L.) in north of Iran., Annals of Biological Research, 3(11), 5007-5012.
  37. Qureshi, M. A., Shakir, M. A., Iqbal, A., Akhtar, N., & Khan, A. (2011)., Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.)., J. Anim. Plant Sci, 21(3), 491-497.
  38. Tarafder HK, Dey A, Dasgupta S. Co-inoculation of phosphate solubilizing bacteria and Rhizobia for improving growth and yield of mungbean (Vigna radiata L.). 2016;11(1):207-212., undefined, undefined
  39. Park, J. H., Lee, H. H., Han, C. H., Yoo, J. A., & Yoon, M. H. (2016)., Synergistic effect of co-inoculation with phosphate-solubilizing bacteria., Korean Journal of Agricultural Science, 43(3), 401-414.
  40. Begum, S. M., & Rajesh, G. (2015)., Impact of microbial diversity and soil enzymatic activity in dimethoate amended soils series of Tamil Nadu., Int J Environ Sci Technol, 4, 1089-1097.
  41. Baraúna, A. C., da Silva, K., Pereira, G. M. D., Kaminski, P. E., Perin, L., & Zilli, J. E. (2014)., Diversidade e eficiência na fixação do nitrogênio de rizóbios isolados de nódulos de Centrolobium paraense., Pesquisa Agropecuária Brasileira, 49(4), 296-305.
  42. Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014)., Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review., Biocatalysis and Agricultural Biotechnology, 3(2), 97-110.
  43. Dil, M., Oelbermann, M., & Xue, W. (2014)., An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics., Canadian Journal of Soil Science, 94(4), 551-562.
  44. Anastasi, A., Tigini, V., & Varese, G. C. (2012)., The bioremediation potential of different ecophysiological groups of fungi., In Fungi as bioremediators (pp. 29-49). Berlin, Heidelberg: Springer Berlin Heidelberg.
  45. Sunithakumari, K., Padma Devi, S. N., Vasandha, S., & Anitha, S. (2014)., Microbial inoculants-a boon to zinc deficient constraints in plants-a review., IJSRP, 4(6), 1-4.
  46. Naveed, S., Rehim, A., Imran, M., Bashir, M. A., Anwar, M. F., & Ahmad, F. (2018)., Organic manures: an efficient move towards maize grain biofortification., International Journal of Recycling of Organic Waste in Agriculture, 7, 189-197.
  47. Iskander, A. L., Khald, E. M., & Sheta, A. S. (2011)., Zinc and manganese sorption behavior by natural zeolite and bentonite., Annals of Agricultural Sciences, 56(1), 43-48.
  48. Sarfaraz, Q., Silva, L. S. D., Drescher, G. L., Zafar, M., Severo, F. F., Kokkonen, A., ... & Solaiman, Z. M. (2020)., Characterization and carbon mineralization of biochars produced from different animal manures and plant residues., Scientific Reports, 10(1), 955.
  49. Bhattacharjee, S., & Sharma, G. D. (2012)., Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.).,
  50. Mathivanan, S., Chidambaram, A. A., Sundramoorthy, P., Baskaran, L., & Kalaikandhan, R. (2014)., Effect of combined inoculations of Plant Growth Promoting Rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)., International Journal of Current Microbiology and Applied Sciences, 3(8), 1010-1020.
  51. Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015)., Plant growth-promoting bacteria as inoculants in agricultural soils., Genetics and molecular biology, 38, 401-419.
  52. Geisseler, D., & Scow, K. M. (2014)., Long-term effects of mineral fertilizers on soil microorganisms–A review., Soil Biology and Biochemistry, 75, 54-63