International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Pharmacognostical, physicochemical and phytochemical evaluation of least studied Cenchrus biflorus Roxb.

Author Affiliations

  • 1Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan –304022, India
  • 2Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan –304022, India
  • 3Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan –304022, India
  • 4Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan –304022, India

Res. J. Recent Sci., Volume 12, Issue (3), Pages 1-11, October,2 (2023)

Abstract

Cenchrus biflorus Roxb. is a member of Poaceae family used in folklore medicine and a staple "famine food" during times of food shortage. Assessments of macroscopic and microscopic characteristics, as well as their physicochemical characteristics of Cenchrus biflorus were evaluated by using standard methods. Phytochemical profile of Cenchrus biflorus leaf and root parts were analyzed in various solvents to determine phenolic, flavonoid and tannin content. Organic solvents like methanol, hydro-ethanol (50:50), aqueous were used for extraction process. Total phenolic content (TPC) and total tannin content (TTC) were analysed using Folin Ciocalteu assay and total flavonoid content (TFC) were measured through AlCl3 calorimetric assay by using UV-Spectrophotometric methods respectively. Microscopic analysis revealed the presence of trichomes, epidermis, vascular bundles, companion cells, and sieve tubes in leaf parts. Root methanolic extract showed the highest amount of TPC (45.18±0.011mg GAE/g) while highest amount of TFC was recorded in leaf methanolic extract (34±0.003mg Quercetin (QE)/g) and TTC was highest in methanol extract of leaf (6.5±0.009mg TA/g). The result presented shows the TPC, TFC and TTC distribution in Cenchrus biflorus leaf and root parts that could be used in the cure of various ailments. The established parameters will be beneficial and appropriate for the creation of a monograph, aid in recognizing this grass in its unadulterated form, preventing its adulteration, and ensuring its therapeutic efficacy.

References

  1. Arora, S., & Kumar, G. (2018)., Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb., Journal of Pharmacognosy and Phytochemistry, 7(1), 1445-1450.
  2. Kumar, M. R., & Janagam, D. (2011)., Export and import pattern of medicinal plants in India., Indian Journal of Science and Technology, 4(3), 245-248.
  3. Saxena, M., Saxena, J., Nema, R., Singh, D., & Gupta, A. (2013)., Phytochemistry of medicinal plants., Journal of pharmacognosy and phytochemistry, 1(6), 168-182.
  4. Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005)., Phytochemical constituents of some Nigerian medicinal plants., African journal of biotechnology, 4(7), 685-688. https://doi.org/10.5897/AJB2005.000-3127
  5. Khyade, V. B., Pawar, S. S., & Sarwade, J. P. (2018)., Novel Sacrificial Medicinal Repositories: Halfa grass, Desmostachya bipinnata (L.) and Cogon grass, Imperata cylindrica (L.)., World Scientific News, 100, 35-50.
  6. Gebashe, F., Aremu, A. O., Gruz, J., Finnie, J. F., & Van Staden, J. (2020)., Phytochemical profiles and antioxidant activity of grasses used in South African traditional medicine., Plants, 9(3), 371.
  7. Katewa, S. S., Guria, B. D., & Jain, A. (2001)., Ethnomedicinal and obnoxious grasses of Rajasthan, India., Journal of ethnopharmacology, 76(3), 293-297. https://doi.org/10.1016/S0378-8741(01)00233-1
  8. Peerzada, A. M., & Naeem, M. (2018)., Germination ecology of Cenchrus biflorus Roxb. : Effects of environmental factors on seed germination., Rangeland ecology & management, 71(4), 424-432. https://doi.org/10. 1016/j.rama.2018.04.002
  9. Hussey, B. M. J., Keighery, G. J., Dodd, J., Lloyd, S. G., & Cousens, R. D. (2007)., Western weeds. A guide to the weeds of Western Australia.,
  10. Chase, A. (1920)., The north american species of Cenchrus., Contributions from the United States National Herbarium, 22(1), 45-77.
  11. Burkill, H. M. (1994)., The useful plants of west tropical Africa., Volume 2: Families EI (No. Edn 2). Royal Botanic Gardens.
  12. Yadav, R. N. S., & Agarwala, M. (2011)., Phytochemical analysis of some medicinal plants., Journal of phytology, 3(12).
  13. Prakash, A., Janmeda, P., Pathak, P., Bhatt, S., & Sharma, V. (2019)., Development and standardization of quality control parameters of different parts of Trianthema portulacastrum L., SN Applied Sciences, 1(9), 1-14. https://doi.org/10.1007/s42452-019-1074-3
  14. Brain, K. R., & Turner, T. D. (1975)., The practical evaluation of phytopharmaceuticals., Vol. 1. Bristol: Wright-Scientechnica.
  15. Pande, J., Padalia H., Rokad N., Chanda S. (2018)., Cyperus conglomeratus (Cyperaceae) a halophyte from Gujarat: Physicochemical, Phytochemical and Pharmacognostic studies.,
  16. Bijeshmon, P. P., & George, S. (2014)., Antimicrobial activity and powder microscopy of the flowers of Tabernaemontana divaricata R. BR. Br., Indo Am. J. Pharm. Res, 4(3).
  17. Zahid, H., Rizwani, G. H., & Shareef, H. (2014)., Standardization of Hibiscus schizopetalus (Mast) Hook according to World Health Organization (WHO) guidelines., Journal of Medicinal Plants Research, 8(22), 802-810.
  18. Kumar, M., Mondal, P., Borah, S., & Mahato, K. (2013)., Physico-chemical evaluation, preliminary phytochemical investigation, fluorescence and TLC analysis of leaves of the plant Lasia spinosa (Lour) Thwaites., Int J Pharm Pharm Sci, 5(2), 306-310.
  19. Soni, A., & Sosa, S. (2013)., Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts., Journal of Pharmacognosy and Phytochemistry, 2(4), 22-29.
  20. Tadhani, M., & Subhash, R. (2006)., Preliminary studies on Stevia rebaudiana leaves: proximal composition, mineral analysis and phytochemical screening., J. Med. Sci, 6(3), 321-326.
  21. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019)., Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal., Plants, 8(4), 96. https://doi.org/10.3390/plants8040096
  22. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014)., Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica., Journal of food and drug analysis, 22(3), 296-302. https://doi.org/10.1088/1757-899X/736/2/022063
  23. Haile, M., & Kang, W. H. (2019)., Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts., Fermentation, 5(1), 29. https://doi.org/10.3390/ fermentation5010029
  24. Evans, W.C. (2005), Trease and Evans’ Pharmacognosy, 16th edn., Rajkamal Electric press, Delhi, pp 516–536
  25. Loganathan, V., Devi, K. M., & Selvakumar, P. (2017)., A study of the physico-chemical and phytochemical parameters of leaves of Mallotus rhamnifolius., International journal of pharmacognosy and phytochemical research, 9(6), 858-863.
  26. Singh, L. R. (2019)., Pharmacognostic Studies of Organically Cultivated Panacea Herb Cynodon Dactylon (l.) Pers., International Journal of Ayurveda and Pharma Research, 65-68.
  27. Singh, L. R. (2019)., Pharmacognostic evaluation of organically cultivated herb Echinochloa colonum (L.) Link.,
  28. Singariya, P., Mourya, K. K., & Kumar, P. (2011)., Preliminary phyto-profile and pharmacological evaluation of some extracts of Cenchrus grass against selected pathogens., J Pharm Sci Res, 3(8), 1387-1393.
  29. Koirala, N., Pandey, R. P., Thuan, N. H., Ghimire, G. P., Jung, H. J., Oh, T. J., & Sohng, J. K. (2019)., Metabolic engineering of Escherichia coli for the production of isoflavonoid-4′-O-methoxides and their biological activities., Biotechnology and Applied Biochemistry, 66(4), 484-493. https://doi.org/10.1002/bab. 1452
  30. Panthi, M., Subba, R. K., Raut, B., Khanal, D. P., & Koirala, N. (2020)., Bioactivity evaluations of leaf extract fractions from young barley grass and correlation with their phytochemical profiles., BMC complementary medicine and therapies, 20(1), 1-9. https://doi.org/10.1186/s12906-020-2862-4
  31. Mondal, M., Hossain, M. S., Das, N., Khalipha, A. B. R., Sarkar, A. P., Islam, M. T., ... & Kundu, S. K. (2019)., Phytochemical screening and evaluation of pharmacological activity of leaf Methanolic extract of Colocasia affinis Schott., Clinical Phytoscience, 5(1), 1-11.
  32. Al-Snafi, A. E. (2016)., Chemical constituents and pharmacological effects of Cynodon dactylon-A review., IOSR Journal of Pharmacy, 6(7), 17-31.
  33. Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., ... & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243., undefined, undefined