International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

An exploration of nanoparticle synthesis techniques and therapeutic applications, with a focus on silver and metallic nanoparticles in food packaging

Author Affiliations

  • 1Institute of Food and Nutritional Sciences, PMAS - Arid Agriculture University, Rawalpindi, 46000, Pakistan
  • 2Institute of Food and Nutritional Sciences, PMAS - Arid Agriculture University, Rawalpindi, 46000, Pakistan

Res. J. Recent Sci., Volume 12, Issue (2), Pages 52-57, July,2 (2023)

Abstract

Nanoparticles are minuscule particles that measure between 10-1000 nanometers in diameter, rendering them invisible to the naked eye. Various materials are utilized in producing nanoparticles, including proteins, polysaccharides, and human-made polymers. The selection of matrix materials relies on several factors such as the desired nanoparticle size, drug properties, surface traits, and antigenicity of the finished product, all of which play crucial roles in the synthesis of nanoparticles. Ongoing technological innovations are enabling the use of modernized techniques to create nanoparticles. The review provides an extensive exploration of these techniques, their biological and chemical properties, and therapeutic impact. The research examines the role of silver nanoparticles, which are commonly used in food packaging and preservation due to their antibacterial and anti-browning properties, and the potential applications of other metallic particles for similar purposes. Furthermore, silver nanoparticles' digestion and physiological benefits, such as their action on mucosa-associated lymphatic tissuesare addressed in detail. These nanoparticles are recommended for medicinal use due to their potential health benefits. Researchers have focused on metallic nanoparticles, particularly magnetic nanoparticles, for their ability to prevent microbial growth. Biopolymers are often utilized as carriers for various particles, and blending organic compounds with metallic Nano-compounds is a straightforward process.

References

  1. Langer, R., (2000)., Biomaterials in drug delivery and tissue engineering: one laboratory, Accounts of Chemical Research., 33(2), 94-101. DOI: 10.1021/ar9800993.
  2. Bhadra, D., Bhadra, S., Jain, P. and Jain, N. K. (2002)., Pegnology: a review of PEG-ylated systems., Die Pharmazie., 57(1), 5-29 (2002)
  3. Kommareddy, S., Tiwari, S. B. and Amiji, M. M. (2005)., Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technology in cancer research & treatment., 4(6), 615-625 (2005) DOI:10.1177/1533 03460500400605.
  4. Lee, M. and Kim, S. W. (2005)., Polyethylene glycol-conjugated copolymers for plasmid DNA delivery, Pharmaceutical research., 22, 1-10. DOI: 10.1007/s11095-004-9003-5., undefined
  5. Kreuter, J. (1994)., Institut für Pharmazeutische Technologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany., Colloidal drug delivery systems, 66, 219.
  6. Mohanraj, V. J. and Chen, Y. J. T. J. O. P. R.,, Nanoparticles- A review., Tropical journal of pharmaceutical research., 5(1), 561-573 (2006) DOI: 10.4314/tjpr.v5i1.14634.
  7. Reverchon, E. and Adami, R. (2006)., Nanomaterials and supercritical fluids, The Journal of supercritical fluids., 37(1), 1-22. DOI: 10.1016/j.supflu.2005.08.003., undefined
  8. Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M. and DeSimone, J. M. (2005)., Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials., Journal of the American Chemical Society., 127(28), 10096-10100. DOI: 10.1021/ja051977c.
  9. Hasan, S. (2015). A review on nanoparticles, their synthesis and types, Res. J. Recent Sci., 2277, 2502., undefined, undefined
  10. Dubchak, S., Ogar, A., Mietelski, J. W. and Turnau, K. (2010)., Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus., Spanish Journal of Agricultural Research, (1), 103-108.
  11. Jain, S. and Mehata, M. S. (2017)., Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property., Scientific reports., 7(1), 15867. DOI: 10.1038/s 41598-017-15724-8.
  12. Sneharani, A. H., Prabhudev, S. H. and Sachin, H. R. (2019)., Effect of phytochemicals on optical absorption spectra during biogenic synthesis of self-assembled silver nanoparticles and studies relevant to food applications., Spectroscopy Letters, 52(7), 413-422. DOI: 10.1080/00387010.2019.1655652.
  13. Lu, W., Guo, J., Zhou, J., Ke, L., Liu, S., Gao, G. and Rao, P. (2012)., Hypothesis review, the direct interaction of food nanoparticles with the lymphatic system., Food Science and Human Wellness, 1(1), 61-64 (2012) DOI: 10.1016/j.fshw.2012.08.003.
  14. Walters K.A. (2005)., Dermatological and transdermal formulations, in: K.A. Walters, M.S. Robert (Eds.)., The Structure and Function of Skin, 274, Marcel Dekker Inc, New York., pp. 1-42 (2005)
  15. Verzár, F., & McDougall, E. J. (1936)., Absorption from the intestine., Absorption from the intestine.
  16. Fischer, P., Pollard, M., Erni, P., Marti, I. and Padar, S. (2009)., Rheological approaches to food systems., Comptes Rendus Physique., 10(8), 740-750. DOI: 10.1016/j.crhy.2009.10.016.
  17. Guo, J., Liu, S., Cheng, X., Zhou, J., Ke, L., Chen, X. and Rao, P. (2009)., Revealing acupuncture meridian-like system by reactive oxygen species visualization., Bioscience Hypotheses, 2(6), 443-445. DOI: 10.1016/j.bihy. 2009.07.005.
  18. Pathak, Y. V., & Lokhande, J. N. (Eds.). (2014)., Handbook of metallonutraceuticals., CRC Press.
  19. Singh, M., Singh, S., Prasad, S. and Gambhir, I. S. (2008)., Nanotechnology in medicine and antibacterial effect of silver nanoparticles., Digest Journal of Nanomaterials and Biostructures., 3(3), 115-122.
  20. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O. (2000)., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus., Journal of biomedical materials research., 52(4), 662-668 (2000). DOI:10.1002/1097-4636(20001215) 52:4<662::AID-JBM10>3.0.CO,2-3.
  21. Singh, M., Singh, S., Prasad, S. and Gambhir, I. S. (2008)., Nanotechnology in medicine and antibacterial effect of silver nanoparticles., Digest Journal of Nanomaterials and Biostructures., 3(3), 115-122 (2008)
  22. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. and Yacaman, M. J. (2005)., The bactericidal effect of silver nanoparticles, Nanotechnology., 16(10), 2346. DOI: 10.1088/0957-4484/ 16/10/059., undefined
  23. Li, P., Li, J., Wu, C., Wu, Q. and Li, J. (2005)., Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles, Nanotechnology., 16(9), 1912. DOI: 10.1088/0957-4484/16/9/082., undefined
  24. Jain, P. and Pradeep, T. (2005)., Potential of silver nanoparticle coated polyurethane foam as an antibacterial water filter., Biotechnology and bioengineering., 90(1), 59-63 DOI: 10.1002/bit.20368.
  25. Li, Y., Leung, P., Yao, L., Song, Q. W. and Newton, E. (2006)., Antimicrobial effect of surgical masks coated with nanoparticles., Journal of Hospital Infection, 62(1), 58-63.DOI: 10.1016/j.jhin.2005.04.015.
  26. Younis, N. K., Ghoubaira, J. A., Bassil, E. P., Tantawi, H. N. and Eid, A. H. (2021)., Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases., Nanomedicine: Nanotechnology, Biology and Medicine., 36, 102433. DOI: 10.1016/j.nano.2021.102433.
  27. Khalid, Z., Hassan, S. M., Mughal, S. S., Hassan, S. K. and Hassan, H. (2021)., Phenolic Profile and Biological Properties of Momordica charantia., Chemical and Biomolecular Engineering., 6(1), 17. DOI: 10.11648/j.cbe. 20210601.13.
  28. Hanif, M. A., Hassan, S. M., Mughal, S. S., Rehman, A., Hassan, S. K., Ibrahim, A. and Hassan, H. (2021)., An overview on ajwain (Trachyspermum Ammi) pharmacological effects: current and conventional, Technology, 5(1), 1-6. DOI: 10.11648/j.pst. 20210501.11., undefined
  29. Hassan, S. M., Mughal, S. S., Hassan, S. K., Ibrahim, A., Hassan, H., Shabbir, N. and Shafiq, S. (2020)., Cellular interactions, metabolism, assessment and control of aflatoxins: an update., Comput Biol Bioinform, 8, 62-71 DOI: 10.11648/j.cbb.20200802.15.
  30. Khattak, A. K., Syeda, M. H. and Shahzad, S. M. (2020)., General overview of phytochemistry and pharmacological potential of Rheum palmatum (Chinese rhubarb)., Innovare Journal of Ayurvedic Sciences., 8(6), 1-5.
  31. Sunderman, F. W. (2001)., Nasal toxicity, carcinogenicity, and olfactory uptake of metals., Annals of Clinical & Laboratory Science, 31(1), 3-24.
  32. Henriksson, J., Tallkvist, J. and Tjälve, H. (1997)., Uptake of nickel into the brain via olfactory neurons in rats, Toxicology letters, 91(2), 153-162. DOI: 10.1016/ S0378-4274(97)03885-X., undefined
  33. Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., Ruan, J. and Hong, F. (2009)., Biochemical toxicity of nano-anatase TiO2 particles in mice., Biological trace element research, 129,170-180. DOI: 10.1007/s 2011-008-8285-6.
  34. Hardas, S.S., Butterfield, D.A., Sultana, R., Tseng, M.T., Dan, M., Florence, R.L., Unrine, J.M., Graham, U.M., Wu, P., Grulke, E.A. and Yokel, R.A. (2021)., Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria, Toxicological Sciences., 116(2), 562-576. DOI: 10.1093/toxsci/kfq137., undefined
  35. Wang, B., Feng, W.Y., Wang, M., Shi, J.W., Zhang, F., Ouyang, H., Zhao, Y.L., Chai, Z.F., Huang, Y.Y., Xie, Y.N. and Wang, H.F. (2007)., Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation., Biological trace element research., 118, 233-243. DOI: 10.1007/s12011-007-0028-6.
  36. Lucchini, R. G., Dorman, D. C., Elder, A. and Veronesi, B. (2012)., Neurological impacts from inhalation of pollutants and the nose–brain connection., Neurotoxicology., 33(4), 838-841. DOI: 10.1016/j.neuro.2011.12.001.
  37. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. (2001)., Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats., Environmental health perspectives, 109(suppl 4), 547-551. DOI: 10.1289/ehp.01109s4547.
  38. Hopkins, L. E., Patchin, E. S., Chiu, P. L., Brandenberger, C., Smiley-Jewell, S. and Pinkerton, K. E. (2014)., Nose-to-brain transport of aerosolised quantum dots following acute exposure., Nanotoxicology., 8(8), 885-893. DOI: 10.3109/17435390.2013.842267.
  39. Liu, Y., Gao, Y., Liu, Y., Li, B., Chen, C. and Wu, G., (2014)., Oxidative stress and acute changes in murine brain tissues after nasal instillation of copper particles with different sizes., Journal of nanoscience and nanotechnology, 14(6), 4534-4540 DOI: 10.1166/jnn.2014. 8290.
  40. Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J. and Oberdörster, G. (2006)., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system., Environmental health perspectives., 114(8), 1172-1178. DOI: 10.1289/ehp.9030.
  41. Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G. and Gao, Y. (2008)., Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases., Toxicology letters., 183(1-3), 72-80. DOI: 10.1016/j.toxlet.2008.10.001.
  42. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B. and Zhao, Y. (2008)., Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles., Toxicology., 254(1-2), 82-90.DOI: 10.1016/j.tox.2008.09.014.
  43. Takács, S.Z., Szabó, A., Oszlánczi, G., Pusztai, P., Sápi, A., Kónya, Z. and Papp, A. (2012)., Repeated simultaneous cortical electrophysiological and behavioral recording in rats exposed to manganese-containing nanoparticles, Acta Biologica Hungarica., 63(4), 426-440. DOI: 10.1556/ abiol.63.2012.4.2., undefined
  44. Sárközi, L., Horváth, E., Kónya, Z., Kiricsi, I., Szalay, B., Vezér, T. and Papp, A. (2009)., Subacute intratracheal exposure of rats to manganese nanoparticles: behavioral, electrophysiological, and general toxicological effects., Inhalation toxicology, 21(sup1), 83-91. DOI: 10.1080/ 08958370902939406.
  45. Oszlánczi, G., Papp, A., Szabó, A., Nagymajtényi, L., Sápi, A., Kónya, Z., Paulik, E. and Vezér, T. (2011)., Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways., Inhalation Toxicology., 23(4), 173-181. DOI:10.3109/08958 378.2011.553248.
  46. Xue, Y., Wu, J. and Sun, J. (2012)., Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro., Toxicology letters, 214(2), 91-98. DOI: 10.1016/j. toxlet.2012.08.009.
  47. Li, X.B., Zheng, H., Zhang, Z.R., Li, M., Huang, Z.Y., Schluesener, H.J., Li, Y.Y. and Xu, S.Q. (2009)., Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains., Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 473-479 (2009) DOI: 10.1016/j.nano.2009.01.013
  48. Oszlánczi, G., Vezér, T., Sárközi, L., Horváth, E., Kónya, Z. and Papp, A. (2010)., Functional neurotoxicity of Mn-containing nanoparticles in rats, Ecotoxicology and Environmental Safety, 73(8), 2004-2009. DOI: 10.1016/ j.ecoenv.2010.09.002., undefined
  49. Chen, L., Yokel, R. A., Hennig, B. and Toborek, M. (2008)., Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature., Journal of Neuroimmune Pharmacology, 3, 286-295. DOI: 10.1007/s11481-008-9131-5.
  50. Sneharani, A. H., Prabhudev, S. H. and Sachin, H. R. (2019)., Effect of phytochemicals on optical absorption spectra during biogenic synthesis of self-assembled silver nanoparticles and studies relevant to food applications., Spectroscopy Letters, 52(7), 413-422. DOI: 10.1080/ 00387010.2019.1655652.
  51. He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., Huang, Z., Li, J., Zeng, C. and Zhang, Q. (2017)., Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities., RSC advances., 7(63), 39842-39851. DOI: 10.1039/C7RA05286C.
  52. Dos Santos, C. A., Ingle, A. P. and Rai, M. (2020)., The emerging role of metallic nanoparticles in food, Applied microbiology and biotechnology, 104, 2373-2383. DOI: 10.1007/s00253-020-10372-x., undefined
  53. Youssef, A. M., El-Sayed, S. M., Salama, H. H., El-Sayed, H. S. and Dufresne, A. (2015)., Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period., Carbohydrate polymers., 132, 274-285 (2015) DOI: 10.1016/j.carbpol. 2015.06.075.
  54. Rai, M., Yadav, A. and Gade, A. (2009)., Silver nanoparticles as a new generation of antimicrobials., Biotechnology advances., 27(1), 76-83. DOI: 10.1016/ j.biotechadv.2008.09.002.
  55. Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Gupta, I., Chaud, M. V. and Dos Santos, C. A. (2017)., Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance, International journal of pharmaceutics, 532(1), 139-148. DOI: 10.1016/j.ijpharm.2017.08.127., undefined