International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Exploring possible SARS-CoV2 vaccines using plant biotechnology

Author Affiliations

  • 1Department of Botany, Fergusson College, Pune-411004, India
  • 2Department of Botany, Fergusson College, Pune-411004, India
  • 3Department of Botany, Shivaji University, Kolhapur-416004, India

Res. J. Recent Sci., Volume 12, Issue (2), Pages 12-25, July,2 (2023)

Abstract

This decade began with an unprecedented crisis. The Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV2) global pandemic capsized our lives and completely overturned the global infrastructure where healthcare and international economics were affected the most. Due to a high transmissible and mutation rate coupled with a staggering mortality rate, this virus has outdone its closely related precursors – MERS/SARS-CoV in terms of lethality. Scientists and renowned pharmaceutical companies have come under immense pressure to mitigate this problem as soon as possible, for which they have been compelled to think out of the box, as well. The construction and mass production of an efficient and accurate vaccine is the global objective now. Scientists and academicians from all walks of science have come together in this joint venture. During this desperate time, plant science has recently been gaining the spotlight via its production of transgenic plants by stable/transient expression of recombinant proteins, which poses to be a ludicrous technology, primarily due to its high-cost effectiveness. Several established pharmaceutical companies have already started to make capital out of this technology. This review paper aims to highlight the plant system as a stable, upcoming, and efficient manufacturing and delivery system of vaccines.

References

  1. Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020)., The SARS-CoV-2 outbreak: what we know., International journal of infectious diseases, 94, 44-48.
  2. Cucinotta D and Vanelli M. (2020)., WHO Declares COVID-19 a Pandemic., Acta Biomed. Mar 19; 91(1), 157-160. doi: 10.23750/abm.v91i1.9397.
  3. Shin, M.D., Shukla, S., Chung, Y.H. et al. (2020)., COVID-19 vaccine development and a potential nanomaterial path forward., Nat. Nanotechnol. 15, 646–655 (2020).
  4. Weiss, S. R., & Leibowitz, J. L. (2011)., Coronavirus pathogenesis., Advances in virus research, 81, 85-164.
  5. Yang, D., & Leibowitz, J. L. (2015)., The structure and functions of coronavirus genomic 3′ and 5′ ends., Virus research, 206, 120-133.
  6. Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H. R., Becker, S., ... & Doerr, H. W. (2003)., Identification of a novel coronavirus in patients with severe acute respiratory syndrome., New England journal of medicine, 348(20), 1967-1976.
  7. Zaki, A. M., Van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012)., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia., New England Journal of Medicine, 367(19), 1814-1820.
  8. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Y., Li, L. and Li, S. (2020)., Molecular architecture of the SARS-CoV-2 virus., Cell, 183(3), 730-738
  9. Kim, J. M. et al. (2020)., Identification of coronavirus isolated from a patient in Korea with COVID-19., Osong Public Health Res. Perspect., 11, 3–7.
  10. Li, F. (2016)., Structure, function, and evolution of coronavirus spike proteins., Annual review of virology, 3, 237-261.
  11. Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., ... & Ward, A. B. (2016)., Pre-fusion structure of a human coronavirus spike protein., Nature, 531(7592), 118-121.
  12. Walls, A. C., Tortorici, M. A., Bosch, B. J., Frenz, B., Rottier, P. J., DiMaio, F., ... & Veesler, D. (2016)., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer., Nature, 531(7592), 114-117.
  13. Beniac, D. R., Andonov, A., Grudeski, E., & Booth, T. F. (2006)., Architecture of the SARS coronavirus prefusion spike., Nature structural & molecular biology, 13(8), 751-752.
  14. Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P. R., & Harrison, S. C. (2006)., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain., Journal of virology, 80(14), 6794-6800.
  15. Perlman, S. (2020)., Another decade, another coronavirus., New England Journal of Medicine, 382(8), 760-762.
  16. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Shi, Z. L. (2020)., A pneumonia outbreak associated with a new coronavirus of probable bat origin., Nature, 579(7798), 270-273.
  17. Cheng, Z. J., & Shan, J. (2020)., 2019 Novel coronavirus: where we are and what we know., Infection; 48(2), 155-63.
  18. Farah, S., Atkulwar, A., Praharaj, M. R., Khan, R., Gandham, R., & Baig, M. (2020)., Phylogenomics and phylodynamics of SARS-CoV-2 genomes retrieved from India., Future Virology, 15(11), 747-753.
  19. WHO (2021)., Coronavirus (COVID 19) Dashboard., https://covid19.who.int/(accessed on 11th June 2021)
  20. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., ... & McLellan, J. S. (2020)., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation., Science, 367(6483), 1260-1263.
  21. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020)., The proximal origin of SARS-CoV-2., Nature medicine, 26(4), 450-452.
  22. Benvenuto, D., Giovanetti, M., Ciccozzi, A., Spoto, S., Angeletti, S., & Ciccozzi, M. (2020)., The 2019‐new coronavirus epidemic: evidence for virus evolution., Journal of medical virology, 92(4), 455-459.
  23. Yuan, M., Wu, N. C., Zhu, X., Lee, C. C. D., So, R. T., Lv, H., ... & Wilson, I. A. (2020)., A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV., Science, 368(6491), 630-633.
  24. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020)., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2., Science, 367(6485), 1444-1448.
  25. Guglielmo, L. (2020)., Epitopes for a 2019-nCoV vaccine., Cellular & Molecular Immunology, 17(5), 539-540.
  26. Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R. H., Peters, B., & Sette, A. (2020)., A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2., Cell host & microbe, 27(4), 671-680.
  27. Baruah, V., & Bose, S. (2020)., Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV., Journal of medical virology, 92(5), 495-500.
  28. Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020)., Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies., Viruses, 12(3), 254.
  29. Enjuanes, L., Zuñiga, S., Castaño-Rodriguez, C., Gutierrez-Alvarez, J., Canton, J., & Sola, I. (2016)., Molecular basis of coronavirus virulence and vaccine development., Advances in virus research, 96, 245-286.
  30. Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., ... & Qin, C. (2019)., From SARS to MERS, thrusting coronaviruses into the spotlight., Viruses, 11(1), 59.
  31. Enjuanes, L., Almazán, F., Sola, I., & Zuñiga, S. (2006)., Biochemical aspects of coronavirus replication and virus-host interaction., Annu. Rev. Microbiol., 60, 211-230.
  32. Ward, B. J., Gobeil, P., Séguin, A., Atkins, J., Boulay, I., Charbonneau, P. Y., ... & Landry, N. (2021)., Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19., Nature medicine, 27(6), 1071-1078.
  33. Perlman, S., & Netland, J. (2009)., Coronaviruses post-SARS: update on replication and pathogenesis., Nature reviews microbiology, 7(6), 439-450.
  34. Shin, M. D., Shukla, S., Chung, Y. H., Beiss, V., Chan, S. K., Ortega-Rivera, O. A., ... & Steinmetz, N. F. (2020)., COVID-19 vaccine development and a potential nanomaterial path forward., Nature nanotechnology, 15(8), 646-655.
  35. Hiatt, A., Caffferkey, R., & Bowdish, K. (1989)., Production of antibodies in transgenic plants., Nature, 342(6245), 76-78.
  36. Takeyama, N., Kiyono, H., & Yuki, Y. (2015)., Plant-based vaccines for animals and humans: recent advances in technology and clinical trials., Therapeutic advances in vaccines, 3(5-6), 139-154.
  37. Laere, E., Ling, A. P. K., Wong, Y. P., Koh, R. Y., Mohd Lila, M. A., & Hussein, S. (2016)., Plant-based vaccines: production and challenges., Journal of Botany.
  38. Naderi, S., & Fakheri, B. (2015)., Overview of plant-based vaccines., Research Journal of Fisheries and Hydrobiology, 10(10), 275-289.
  39. Gleba, Y. Y., Tusé, D., & Giritch, A. (2013)., Plant viral vectors for delivery by Agrobacterium., Plant viral vectors, 155-192.
  40. Peyret, H., & Lomonossoff, G. P. (2013)., The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants., Plant molecular biology, 83, 51-58.
  41. Shoji, Y., Farrance, C. E., Bautista, J., Bi, H., Musiychuk, K., Horsey, A., ... & Yusibov, V. (2012)., A plant‐based system for rapid production of influenza vaccine antigens., Influenza and other respiratory viruses, 6(3), 204-210.
  42. Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., ... & Kobinger, G. P. (2014)., Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp., Nature, 514(7520), 47-53.
  43. Shohag, M. J. I., Khan, F. Z., Tang, L., Wei, Y., He, Z., & Yang, X. (2021)., COVID-19 crisis: how can plant biotechnology help?., Plants, 10(2), 352.
  44. Buyel, J. F., & Fischer, R. (2012)., Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs., Biotechnology and bioengineering, 109(10), 2575-2588.
  45. Xu, S., Gavin, J., Jiang, R., & Chen, H. (2017)., Bioreactor productivity and media cost comparison for different intensified cell culture processes., Biotechnology Progress, 33(4), 867-878.
  46. Ma, J. K. C., Drossard, J., Lewis, D., Altmann, F., Boyle, J., Christou, P., ... & Fischer, R. (2015)., Regulatory approval and a first‐in‐human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants., Plant biotechnology journal, 13(8), 1106-1120.
  47. Sack, M., Rademacher, T., Spiegel, H., Boes, A., Hellwig, S., Drossard, J., ... & Fischer, R. (2015)., From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants., Plant biotechnology journal, 13(8), 1094-1105.
  48. Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J., Munigunti, R. K., White, E. L., ... & Marcel, S. (2015)., Commercial‐scale biotherapeutics manufacturing facility for plant‐made pharmaceuticals., Plant biotechnology journal, 13(8), 1180-1190.
  49. Kaper, J. B., & Cobon, G. S. (2004)., New generation vaccines (No. 16024)., M. M. Levine, & G. C. Woodrow (Eds.). New York;: Marcel Dekker.
  50. Rybicki, E. P. (2009)., Plant-produced vaccines: promise and reality., Drug discovery today, 14(1-2), 16-24.
  51. Gomord, V., Fitchette, A. C., Menu‐Bouaouiche, L., Saint‐Jore‐Dupas, C., Plasson, C., Michaud, D., & Faye, L. (2010)., Plant‐specific glycosylation patterns in the context of therapeutic protein production., Plant biotechnology journal, 8(5), 564-587.
  52. Shahid, N., & Daniell, H. (2016)., Plant-based oral vaccines against zoonotic and non-zoonotic diseases., Plant Biotechnology Journal, 14(11), 2079–2099. doi:10.1111/pbi.12604
  53. Naderi, S., & Fakheri, B. (2015)., Overview of plant-based vaccines., Research Journal of Fisheries and Hydrobiology, 10(10), 275-289.
  54. Saxena, J., & Rawat, S. (2014)., Edible vaccines., Advances in biotechnology, 207-226.
  55. Vasil, I. K., & Vasil, V. (2006)., Transformation of wheat via particle bombardment., Plant Cell Culture Protocols, 273-283.
  56. Verma, D., & Daniell, H. (2007)., Chloroplast vector systems for biotechnology applications., Plant physiology, 145(4), 1129-1143.
  57. Kamarajugadda, S., & Daniell, H. (2006)., Chloroplast-derived anthrax and other vaccine antigens: their immunogenic and immunoprotective properties., Expert Review of Vaccines, 5(6), 839-849.
  58. Cerovska, N., Hoffmeisterova, H., Moravec, T., Plchova, H., Folwarczna, J., Synkova, H., ... & Smahel, M. (2012)., Transient expression of Human papillomavirus type 16 L2 epitope fused to N-and C-terminus of coat protein of Potato virus X in plants., Journal of biosciences, 37, 125-133.
  59. Matić, S., Rinaldi, R., Masenga, V., & Noris, E. (2011)., Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants., BMC biotechnology, 11, 1-12.
  60. Ravin, N. V., Kotlyarov, R. Y., Mardanova, E. S., Kuprianov, V. V., Migunov, A. I., Stepanova, L. A., ... & Skryabin, K. G. (2012)., Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein., Biochemistry (Moscow), 77, 33-40.
  61. Shoji, Y., Farrance, C. E., Bautista, J., Bi, H., Musiychuk, K., Horsey, A., ... & Yusibov, V. (2012)., A plant‐based system for rapid production of influenza vaccine antigens., Influenza and other respiratory viruses, 6(3), 204-210.
  62. D’Aoust, M. A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L. P. (2010)., The production of hemagglutinin‐based virus‐like particles in plants: a rapid, efficient and safe response to pandemic influenza., Plant biotechnology journal, 8(5), 607-619.
  63. Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., & Chen, Q. (2013)., Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins., Journal of Visualized Experiments, (77), e50521.
  64. Wirz, H., Sauer-Budge, A. F., Briggs, J., Sharpe, A., Shu, S., & Sharon, A. (2012)., Automated production of plant-based vaccines and pharmaceuticals., Journal of laboratory automation, 17(6), 449-457.
  65. Gleba, Y., Marillonnet, S., & Klimyuk, V. (2004)., Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies., Current opinion in plant biology, 7(2), 182-188.
  66. Scotti, N., & Rybicki, E. P. (2013)., Virus-like particles produced in plants as potential vaccines., Expert review of vaccines, 12(2), 211-224.
  67. Rybicki, E. P. (2014)., Plant-based vaccines against viruses., Virology journal, 11, 1-20.
  68. Peyret, H., & Lomonossoff, G. P. (2013)., The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants., Plant molecular biology, 83, 51-58.
  69. Sainsbury, F., Thuenemann, E. C., & Lomonossoff, G. P. (2009)., pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants., Plant biotechnology journal, 7(7), 682-693.
  70. Rosales-Mendoza, S., Márquez-Escobar, V. A., González-Ortega, O., Nieto-Gómez, R., & Arévalo-Villalobos, J. I. (2020)., What does plant-based vaccine technology offer to the fight against COVID-19?., Vaccines, 8(2), 183.
  71. Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., ... & Lu, J. (2020)., On the origin and continuing evolution of SARS-CoV-2., National science review, 7(6), 1012-1023.
  72. de Jong, J. M., Schuurhuis, D. H., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W., Ossendorp, F., ... & Verbeek, J. S. (2006)., Murine Fc receptors for IgG are redundant in facilitating presentation of immune complex derived antigen to CD8+ T cells in vivo., Molecular immunology, 43(13), 2045-2050.
  73. Chargelegue, D., Drake, P. M., Obregon, P., Prada, A., Fairweather, N., & Ma, J. K. (2005)., Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants., Infection and immunity, 73(9), 5915-5922.
  74. Marusić-Galesić, S., Marusić, M., & Pokrić, B. (1992)., Cellular immune response to the antigen administered as an immune complex in vivo., Immunology, 75(2), 325.
  75. Pepponi, I., Diogo, G. R., Stylianou, E., van Dolleweerd, C. J., Drake, P. M., Paul, M. J., ... & Reljic, R. (2014)., Plant‐derived recombinant immune complexes as self‐adjuvanting TB immunogens for mucosal boosting of BCG., Plant biotechnology journal, 12(7), 840-850.
  76. Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R. H., Peters, B., & Sette, A. (2020)., A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2., Cell host & microbe, 27(4), 671-680.
  77. Zheng, M., & Song, L. (2020)., Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV., Cellular & molecular immunology, 17(5), 536-538.
  78. Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009)., The spike protein of SARS-CoV-a target for vaccine and therapeutic development., Nature Reviews Microbiology, 7(3), 226-236.
  79. Daniell, H., Lee, S. B., Panchal, T., & Wiebe, P. O. (2001)., Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts., Journal of molecular biology, 311(5), 1001-1009.
  80. Tregoning, J. S., Nixon, P., Kuroda, H., Svab, Z., Clare, S., Bowe, F., ... & Maliga, P. (2003)., Expression of tetanus toxin fragment C in tobacco chloroplasts., Nucleic acids research, 31(4), 1174-1179.
  81. Koya, V., Moayeri, M., Leppla, S. H., & Daniell, H. (2005)., Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge., Infection and immunity, 73(12), 8266-8274.
  82. Chebolu, S., & Daniell, H. (2007)., Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis., Plant biotechnology journal, 5(2), 230-239.
  83. Birch‐Machin, I., Newell, C. A., Hibberd, J. M., & Gray, J. C. (2004)., Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability., Plant Biotechnology Journal, 2(3), 261-270.
  84. Glenz, K., Bouchon, B., Stehle, T., Wallich, R., Simon, M. M., & Warzecha, H. (2006)., Production of a recombinant bacterial lipoprotein in higher plant chloroplasts., Nature biotechnology, 24(1), 76-77.
  85. Tacket, C. O., Mason, H. S., Losonsky, G., Clements, J. D., Levine, M. M., & Arntzen, C. J. (1998). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nature medicine, 4(5), 607-609., undefined, undefined
  86. Tacket, C. O., Pasetti, M. F., Edelman, R., Howard, J. A., & Streatfield, S. (2004)., Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn., Vaccine, 22(31-32), 4385-4389.
  87. Tacket, C. O., Mason, H. S., Losonsky, G., Estes, M. K., Levine, M. M., & Arntzen, C. J. (2000)., Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes., The journal of infectious diseases, 182(1), 302-305.
  88. Kapusta, J., Modelska, A., Figlerowicz, M., Pniewski, T., Letellier, M., Lisowa, O., ... & Legocki, A. B. (1999)., A plant‐derived edible vaccine against hepatitis B virus., The FASEB journal, 13(13), 1796-1799.
  89. Thanavala, Y., Mahoney, M., Pal, S., Scott, A., Richter, L., Natarajan, N., ... & Mason, H. S. (2005)., Immunogenicity in humans of an edible vaccine for hepatitis B., Proceedings of the National Academy of Sciences, 102(9), 3378-3382.
  90. Yusibov, V., Hooper, D. C., Spitsin, S. V., Fleysh, N., Kean, R. B., Mikheeva, T., ... & Koprowski, H. (2002)., Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine., Vaccine, 20(25-26), 3155-3164.
  91. Shoji, Y., Farrance, C. E., Bautista, J., Bi, H., Musiychuk, K., Horsey, A., ... & Yusibov, V. (2012)., A plant‐based system for rapid production of influenza vaccine antigens., Influenza and other respiratory viruses, 6(3), 204-210.
  92. Buyel, J. F., Twyman, R. M., & Fischer, R. (2017)., Very-large-scale production of antibodies in plants: The biologization of manufacturing., Biotechnology Advances, 35(4), 458-465.
  93. D’Aoust, M. A., Lavoie, P. O., Couture, M. M. J., Trépanier, S., Guay, J. M., Dargis, M., ... & Vézina, L. P. (2008)., Influenza virus‐like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice., Plant biotechnology journal, 6(9), 930-940.
  94. D’Aoust, M. A., Couture, M. M. J., Charland, N., Trépanier, S., Landry, N., Ors, F., & Vézina, L. P. (2010)., The production of hemagglutinin‐based virus‐like particles in plants: a rapid, efficient and safe response to pandemic influenza., Plant biotechnology journal, 8(5), 607-619.
  95. Nochi, T., Yuki, Y., Katakai, Y., Shibata, H., Tokuhara, D., Mejima, M., ... & Kiyono, H. (2009)., A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity., The Journal of Immunology, 183(10), 6538-6544.
  96. Koya, V., Moayeri, M., Leppla, S. H., & Daniell, H. (2005)., Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge., Infection and immunity, 73(12), 8266-8274.
  97. Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., & Samaj, J. (2015)., Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications., Biotechnology Advances, 33(6), 1024-1042.
  98. Gretler, C. (2022)., Tobacco-Based Coronavirus Vaccine Poised for Human Tests Bloomberg., May 15.
  99. Palca, J. (2020)., Tobacco plants contribute key ingredient for COVID-19 Vaccine.,
  100. Mullan, K. (2020)., Tobacco Giant BAT Says It Could be Making 1 to 3 Million COVID-19 Vaccines a Week by June.,
  101. Chung, Y. H., Cai, H., & Steinmetz, N. F. (2020)., Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications., Advanced Drug Delivery Reviews, 156, 214-235.
  102. Mahmood, N., Nasir, S. B., & Hefferon, K. (2020)., Plant-based drugs and vaccines for COVID-19., Vaccines, 9(1), 15.
  103. Kumar, A. U., Kadiresen, K., Gan, W. C., & Ling, A. P. K. (2021)., Current updates and research on plant-based vaccines for coronavirus disease 2019., Clinical and Experimental Vaccine Research, 10(1), 13.
  104. Commandeur, U., Twyman, R. M., & Fischer, R. (2003)., The biosafety of molecular farming in plants., CABI Reviews, (2003), 9-pp.
  105. Wagner, B., Fuchs, H., Adhami, F., Ma, Y., Scheiner, O., & Breiteneder, H. (2004)., Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana., Methods, 32(3), 227-234.