International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Investigating the effectiveness of integrating plant growth promoting microbes (biofertilisers) in traditional maize cropping systems of Malawi

Author Affiliations

  • 1Ministry of Agriculture, Chitedze Agricultural Research Station Box 158 Lilongwe, Malawi

Res. J. Recent Sci., Volume 11, Issue (3), Pages 1-15, July,2 (2022)

Abstract

Maize production is facing an array of soil nutrient related problems throughout tropical countries. In most tropical soils, phosphorous, zinc, potassium, boron, and other nutrients are often in fixed form and extensive research has shown potentiality of indigenous microbes that solubilise these fixed minerals. The experiments were, therefore, conducted to evaluate the response of integrating a concoction of indigenous plant growth promoting microbes (PGPM)- with ability to fix nitrogen and solubilise phosphorous, potassium and zinc in traditional maize cropping systems for reduced production cost and environmental degradation that emanate from the use of inorganic fertilizers. A concoction of indigenous PGPM, a product of LOGO TECH operating under trade secrets was used in this study. Field layout followed completely Randomized Block Design with three replications and 13 treatments (based on different rates of inorganic fertilizers). Results showed PGPM significantly influenced yield and its components of maize in the study sites. However, maize yield and agronomic traits were significantly higher when PGPM were integrated with 69kg of nitrogen in medium altitude districts. The application of basal fertilizer negatively affects the performance of PGPM due to heavy metals associated with phosphate rocks, a raw material used in the production of phosphate based fertilizers.

References

  1. Zelicourt A De, Al-yousif M and Hirt H. (2013)., Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance The Role of Rhizosphere Microbes., Mol Plant., 6(2), 242-245. doi:10.1093/mp/sst028
  2. Wang S, Chen HYH, Tan Y, Fan H and Ruan H. (2016), Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China., Nat Publ Gr., 1-10, doi:10.1038/srep20816
  3. Tortella, G. R., Rubilar, O., Cea, M., Wulff, C., Martínez, O., & Diez, M. C. (2010)., Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination., Journal of soil science and plant nutrition, 10(4), 464-475.
  4. Sumatera N. (2016)., Effect of Microbes Phosphate Solubilizing and Organic Matter to Status the Phosphate on Andisol Impacted by Mount Sinabung., (4).
  5. Furtak, K., & Gałązka, A. (2019)., Edaphic factors and their influence on the microbiological biodiversity of the soil environment., Postępy Mikrobiologii-Advancements of Microbiology, 58(4), 375-384.
  6. Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP, Gan Y. (2014)., Improving farming practices reduces the carbon footprint of spring wheat production., Nat Commun, 5(May), 1-13. doi:10.1038/ncomms6012
  7. Alberola C, Lichtfouse E, Navarrete M, Debaeke P and Souchère V. (2008)., Agronomy for sustainable development., Ital J Agron., 3(3), 77-78. doi:10.1051/agro
  8. Quan Z, Huang B, Lu C, et al. (2016)., The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil., Nat Publ Gr., 1-9. doi:10.1038/srep21539
  9. Suseelendra Desai (2012)., Potential microbial candidate strains for management of nutrient requirements of crops., African J Microbiol Res., 6(17), 3924-3931. doi:10.5897/AJMR12.224
  10. Snapp SS, Mafongoya PL and Waddington S. (1998)., Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa., 71.
  11. Snapp S, Kamanga B and Wellard K. (2000)., Towards integrated soil fertility management in Malawi: fertility management in Malawi: incorporating participatory., (11).
  12. Mikkelsen, R. (2004)., Managing phosphorus for maximum alfalfa yield and quality., In Proceedings, National Alfalfa Symposium. UC Cooperative Extension (eds) University of California, San Diego, California, USA.
  13. Giller K, Mason N, Mcguhuey M, Evers G, Simpson B. (2014)., Production Systems in Tropical Countries.,
  14. Aferi NK (2014)., Isolation of phosphate solubilizing bacteria from tropical soil., 3(1), 8-15.
  15. Song O, Lee S, Lee Y, Lee S, Kim K and Choi Y. DA (2008)., Isolated From Cultivated Soil., 151-156.
  16. Gupta M, Kiran S, Gulati A, Singh B and Tewari R. (2012)., Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller., Microbiol Res., 167(6), 358-363. doi:10.1016/j.micres.2012.02.004
  17. Sharma S, Kumar V and Tripathi RB. (2011)., Isolation of Phosphate Solubilizing Microorganism (PSMs) From Soil., Journal of microbiology and Biotechnology Research, 1(2), 90-95.
  18. Parmar, K. B., Mehta, B. P., & Kunt, M. D. (2016)., Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize (Zea mays)., Int J Sci Environ Technol, 5(5), 3030-3037.
  19. Parmar P, and Sindhu SS. (2013)., Potassium Solubilization by Rhizosphere Bacteria : Influence of Nutritional and Environmental Conditions., 3(1), 25-31. doi:10.5923/j.microbiology.20130301.04
  20. Angraini E, Mubarik NR and Widyastuti R. (2016)., Malaysian Journal of Microbiology Study of potassium solubilizing bacteria from limestone mining area in Palimanan. 12(1), 62-68., undefined
  21. Mubarik, N. R., Wibowo, R. H., Angraini, E., Mursyida, E., & Wahdi, E. (2014)., Exploration of bacterial diversity at Cirebon Quarry., Final Report. Quarry Life Award Project, 1-12.
  22. Sharma R, Vleesschauwer D De, Sharma MK and Ronald PC. (2013)., Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice., Mol Plant., 6(2), 250-260. doi:10.1093/mp/sss147
  23. Sunitha K, Padma SN, Vasandha S and Anitha S (2014)., Microbial Inoculants- A Boon to Zinc Deficient Constraints in Plants : A Review., IJSRP, 4(6), 4-7.
  24. Shaikh, S. S., & Saraf, M. S. (2017)., Optimization of growth conditions for zinc solubilizing plant growth associated bacteria and fungi., J Adv Res Biotechnol, 2(1), 1-9.
  25. Bapiri, A., Asgharzadeh, A., Mujallali, H., Khavazi, K., & Pazira, E. (2012)., Evaluation of Zinc solubilization potential by different strains of Fluorescent Pseudomonads., Journal of Applied Sciences and Environmental Management, 16(3).
  26. Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002)., Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery., FEMS microbiology letters, 213(1), 1-6.
  27. Dona, A., & Arvanitoyannis, I. S. (2009)., Health risks of genetically modified foods., Critical reviews in food science and nutrition, 49(2), 164-175.
  28. Hussain, A., Arshad, M., Zahir, Z. A., & Asghar, M. (2015)., Prospects of zinc solubilizing bacteria for enhancing growth of maize., Pakistan journal of agricultural sciences, 52(4).
  29. Sharma, S., Kumar, V., & Tripathi, R. B. (2011)., Isolation of phosphate solubilizing microorganism (PSMs) from soil., Journal of Microbiology and Biotechnology Research, 1(2), 90-95.
  30. Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015)., Plant growth-promoting bacteria as inoculants in agricultural soils., Genetics and Molecular Biology, 38, 401-419.
  31. Simon, M. F., Grether, R., de Queiroz, L. P., Särkinen, T. E., Dutra, V. F., & Hughes, C. E. (2011)., The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants., American Journal of Botany, 98(7), 1201-1221.
  32. Santos, E. A. D., Ferreira, L. R., Costa, M. D., Silva, M. D. C. S. D., Reis, M. R. D., & França, A. C. (2013)., Occurrence of symbiotic fungi and rhizospheric phosphate solubilization in weeds., Acta Scientiarum. Agronomy, 35, 49-55.
  33. Azevedo, J. L., Maccheroni Jr, W., Pereira, J. O., & De Araújo, W. L. (2000)., Endophytic microorganisms: a review on insect control and recent advances on tropical plants., Electronic Journal of Biotechnology, 3(1), 15-16.
  34. Jafari, M., Danesh, Y. R., Goltapeh, E. M., & Varma, A. (2013)., Bioremediation and genetically modified organisms., In Fungi as bioremediators. Springer, Berlin, Heidelberg. pp. 433-451.
  35. Khan, M. S., Zaidi, A., & Ahmad, E. (2016)., Phosphate solubilizing microorganisms., Springer International Pu.
  36. Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd Allah, E. F. (2017)., Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress., Frontiers in Microbiology, 8, 1887.
  37. Chishi, K. Y. (2010)., Studies on dual inoculation of potassium solubilizing bacteria and phosphorus solubilizing bacteria on growth and yield of maize (Zea mays L.)., Agricultural Microbiology UAS, Dharwad-580005, Karnataka State, India.
  38. Son, T. T. N., Diep, C. N., Giang, T. T. M. & Thu, T. T. (2007)., Effect of co-inoculants (Bradyrhizobia and phosphate Solubilizing bacteria) liquid on soybean under rice based Cropping system in the mekong delta., Omon Rice, 15, 135-143.
  39. Lee, Y. J., Lee, H. H., Lee, C. J., & Yoon, M. H. (2016)., Effect of co-inoculation of two bacteria on phosphate solubilization., Korean Journal of Soil Science and Fertilizer, 49(4), 318-326.
  40. Dil, M., Oelbermann, M., & Xue, W. (2014)., An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics., Canadian Journal of Soil Science, 94(4), 551-562.
  41. Wang, H., Fotidis, I. A., & Angelidaki, I. (2015)., Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria., FEMS microbiology ecology, 91(11).
  42. Ruzzi, M., & Aroca, R. (2015)., Plant growth-promoting rhizobacteria act as biostimulants in horticulture., Scientia Horticulturae, 196, 124-134.
  43. Stella, M., & Halimi, M. (2015)., Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes., J Trop Agric Food Sci, 43(1), 41-53.
  44. Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014)., Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity., Microbial cell factories, 13(1), 1-10.
  45. Beyranvand, H., Farnia, A., Nakhjavan, S. H., & Shaban, M. (2013)., Response of yield and yield components of maize (Zea mayz L.) to different bio fertilizers., International Journal of Advanced Biological and Biomedical Research, 1(9), 1068-1077.
  46. Morais, T. P. D., Brito, C. H. D., Brandão, A. M., & Rezende, W. S. (2016)., Inoculation of maize with Azospirillum brasilense in the seed furrow., Revista Ciência Agronômica, 47, 290-298.
  47. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., ... & Prigent-Combaret, C. (2013)., Plant growth-promoting rhizobacteria and root system functioning., Frontiers in Plant Science, 4, 356.
  48. Li JF, Zhang SQ, Huo PH, Shi SL, Miao YY. (2013)., Effect of phosphate solubilizing rhizobium and nitrogen fixing bacteria on growth of alfalfa seedlings under P and N deficient conditions., Pakistan J Bot., 45(5), 1557-1562.
  49. Lavakush, Yadav J, Verma JP, Jaiswal DK and Kumar A. (2013)., Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa)., Ecol Eng., 62. doi:10.1016/j.ecoleng.2013.10.013
  50. Akhtar N, Rehman A, Saleem MF, Safdar ME and Hussain S. (2011)., Grain quality, nutrient use efficiency, and bioeconomics of maize under different sowing methods and npk levels., 1(December), 2-9.
  51. Bashan Y, de-Bashan LE, Prabhu SR and Hernandez JP. (2014)., Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013)., Plant Soil., 378(1-2), 1-33. doi:10.1007/s11104-013-1956-x
  52. Hardy, T., Kanyama-phiri, G., Kumwenda, J., Mann, C., Mughogho, S., Phiri, A., & Blackie, M. (1998)., Malawi: Soil fertility issues and options., CIIFAD/MOIST. Cornell University.
  53. Naveed S, Rehim A, Imran M, et al. (2018)., Organic manures : an efficient move towards maize grain biofortification., Int J Recycl Org Waste Agric., 7(3), 189-197. doi:10.1007/s40093-018-0205-y
  54. Iskander AL. (2011)., Zinc and manganese sorption behavior by natural zeolite and bentonite., Ann Agric Sci., 56(1), 43-48. doi:10.1016/j.aoas.2011.05.002
  55. Sarfaraz Q, Silva L, Drescher G, Zafar M and Severo F. (2020)., Characterization and carbon mineralization of biochars produced from different animal manures and plant residues., Sci Rep., 1-9. doi:10.1038/s41598-020-57987-8
  56. Bhattacharjee S and Sharma GD. (2012)., Effect of Dual Inoculation of Arbuscular Mycorrhiza and Rhizobium on the Chlorophyll, Nitrogen and Phosphorus Contents of Pigeon Pea (Cajanus cajan L.)., 561-564.
  57. Mathivanan, S., Chidambaram, A. A., Sundramoorthy, P., Baskaran, L., & Kalaikandhan, R. (2014)., Effect of combined inoculations of Plant Growth Promoting Rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)., International Journal of Current Microbiology and Applied Sciences, 3(8), 1010-1020.
  58. Geisseler D and Scow KM. (2014)., Soil Biology & Biochemistry Long-term effects of mineral fertilizers on soil microorganisms : A review., Soil Biol Biochem., 75, 54-63. doi:10.1016/j.soilbio.2014.03.023
  59. Hundey, E. J., Russell, S. D., Longstaffe, F. J., & Moser, K. A. (2016)., Agriculture causes nitrate fertilization of remote alpine lakes., Nature Communications, 7(1), 1-9.
  60. Savci S. (2012)., Investigation of Effect of Chemical Fertilizers on Environment., APCBEE Procedia. 1(January), 287-292. doi:10.1016/j.apcbee.2012.03.047
  61. Graham, E., Grandy, S., & Thelen, M. (2009)., Manure effects on soil organisms and soil quality. Emerging Issues in Animal Agriculture., Michigan State University Extension, 1-6.
  62. Matiru, V. N., & Dakora, F. D. (2004)., Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops., African Journal of Biotechnology, 3(1), 1-7.
  63. Moraditochaee, M., Amiri, E., & Azarpour, E. (2012)., Effects zeolite and their integrated bio-fertilizer and different levels of chemical nitrogen fertilizer under irrigation management on yield and yield components of peanut (Arachis hypogaea L.) in north of Iran., Annals of Biological Research, 3(11), 5007-5012.