International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Recovery of Nickel from Spent Ni/Al2O3 Catalysts using Acid Leaching, Chelation and Ultrasonication

Author Affiliations

  • 1Chemical Engineering Department, Institute Of Technology, Nirma University, Ahmedabad–382 481, INDIA

Res. J. Recent Sci., Volume 1, Issue (ISC-2011), Pages 434-443, (2012)

Abstract

Supported nickel catalysts, containing 2.5% to 20% of nickel metal, are widely used in chemical industry for hydrogenation, hydrotreating, and steam-reforming reaction. These catalysts have specific life and are subsequently discarded due to its deactivation owing to coke deposition on its surface. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste and also it requires compliance with stringent environmental regulations. Also the cost and demand of nickel has been rising significantly. In this context recovery of nickel can serve both of the important issues. This review cum research work focuses on the recovery of nickel from spent nitrogenous catalyst using conventional acid leaching & chelation route and a novel technique Ultrasonication developed & implemented successfully by the authors. Using ultrasonication technique significantly faster recovery of nickel salt (50 minutes) was accomplished compared to chelation route (7-8 h) and acid leaching (5-6 h). The %recovery and purity is significantly high for ultrasonication route compared to conventional acid leaching and chelation technique. The recovered nickel salts can be recycled for the preparation of fresh catalysts and promises to be a good industrial process for handling 1-2 t per batch of spent nickel catalyst.

References

  1. Singh B., Treatment of spent catalyst from thenitrogenous fertilizer industry - A review ofthe available methods of regeneration, recovery and disposal, J. Hazard. Mater.,167(1-3), 24-37 (2009)
  2. Oza R. Shah N. and Patel S., Removal ofNickel from Spent Catalysts usingUltrasonication Assisted Leaching, J. Chem.Technol. Biotechnol., 86(10), 1276-1281(2011)
  3. Oza R. Shah N. and Patel S., Nickel Recoveryfrom Spent Ni/Al2O3 Catalysts using NitricAcid Solution, Asian J. Water, Environ.Pollut,. 8(3), 29-35 (2011)
  4. Oza R. Shah N. and Patel S., Extraction ofNickel from Spent Catalyst using EDTA as Chelating Agent, Nat. Environ. Pollut.Technol., 10(2), 197-200 (2011)
  5. Vuyyuru K. R. Pant K. K. Krishnan V. V. andNigam K. D. P, Recovery of Nickel fromSpent Industrial Catalysts Using ChelatingAgents, Ind. Eng. Chem. Res., 49(5), 2014–2024 (2010)
  6. Kolosnitsyn V. S. Kosternova S. P.Yapryntseva O. A. Ivashchenko A. A. andAlekseev S. V., Recovery of nickel withsulfuric acid solutions from spent catalysts forsteam conversion of methane, Russian J. Appl.Chem., 79, 539–543 (2006)
  7. Ivascan S. and Roman O., Nickel recoveryfrom spent catalyst. I Solvation process, Bu1Inst Politeh Iasi Sect 22, 47–51 (1975)
  8. Sinka G. Vigvari M. Koracsi G. Legal T.Gyalasi I. and Gabor G., Recovery of Ni fromspent catalyst, Hung Teljes HU, 46, 556(1988)
  9. Al-Mansi N. M. and Abdel Monem N. M, Recovery of nickel oxide from spent catalyst,Waste Manage., 22, 85–90 (2002)
  10. Pamela A. Mukharjee T. K. and SundaresanA. M., Reduction roasting – sulphuric acidleaching of nickel from a spent catalyst, MetalMineral. Process., 3, 81–92 (1991)
  11. Sahu K. K. Agarwal A. and Pandey B. D., Nickel recovery from spent nickel catalyst, J.Waste Manage. Res., 23, 148–154 (2005)
  12. Matkovic V. Markovic B. Sokic M. andVuckovic N., Recycling of spent nickel basedcatalysts, Acta Metallurgica Slovaca., 12,284–288 (2006)
  13. Chaudhary A. J. Donaldson J. D. BoddingtonS. C. and Grimes S.G., Heavy metals inenvironment: part II, A hydrochloric acidleaching process for the recovery of nickelvalue from a spent catalyst, Hydrometall.,34,137–150 (1993)
  14. Bosio V. and Vierra M. and Donati E., Integrated bacterial process for the treatmentof a spent nickel catalyst, J. Hazard. Mater.,154(1-3), 804-810 (2008)
  15. Santhiya D. and Ting Y., Bioleaching of spentrefinery processing catalyst using Aspergillusniger with high-yield oxalic acid, J.Biotechnol., 116(2), 171-184 (2005)
  16. Shinohara Y. and Mitsuhasli M., Leaching ofvaluable metal in waste desulfurizationcatalyst, Japan kokai, 76 82–86 (1976)
  17. Floarea O. Mihai M. Morarus M. Kohn D. andSora M., Filtration: physical models andoperating conditions, Rev Chim (Bucharest),42 553 (1991)
  18. Vicol M. Heves A. and Potoroaca M., Recovery of nickel from spent catalysts, CombinatuldeIngrasaminteChimicePiatraNeamt,112, 832 (1986)
  19. Manoliu C. Olara I. Zugravescu P. Serdaru M.and Popescu E., Metal recovery from spentNi/AlO3 catalyst, Rom. Ro., 87, 980 (1985)
  20. Ghanem R. Farag H. Eltaweel Y. and OssmanE., Recovery of nickel from spent catalyst bysingle and multi-stage leaching process, Int. J.Environ. Waste Manag., 2(6), 540–548 (2008)
  21. Molnar L. Sinka G. Szentgyorgyi G. andLukacs P., Ni recovery from spenthydrocracking catalyst, Hung Teljes HU, 46,565 (1988).
  22. Kitakatsu N. Maurice V. Hinnen C. andMarcus P., Surface hydroxylation and localstructure of NiO thin films formed on Ni(111), Surf. Sci., 407(1-3), 36-58 (1998)
  23. Kitakatsu N. Maurice V. and Marcus P., Localdecomposition of NiO ultra-thin films formedon Ni(111), Surf. Sci., 411(1-2), 215 (1998)
  24. Jesus J. C. Carrazza J. Pereira P. and Zaera F., Hydroxylation of NiO films: the effect ofwater and ion bombardment during theoxidation of nickel foils with O2 undervacuum, Surf. Sci., 397(1-3), 34-47(1998)
  25. Christel L. Pierre A. and Abel D. A-M. P., Temperature programmed reduction studies ofnickel manganite spinels, Thermochim Acta.,306(1-2), 51-59 (1997)
  26. Richardson J. T. Scates R. and Twigg M. V., X-ray diffraction study of nickel oxidereduction by hydrogen, Appl. Catal. A:Gen.,246(1), 137-150 (2003)
  27. Sharma S. K. Vastola F. J. Walker P. L. Jr., Reduction of nickel oxide by carbon: I.Interaction between nickel oxide and pyrolyticgraphite, Carbon., 34(11), 1407-1412 (1996)
  28. Liu S. Xu L. Xie S. Wang Q. and Xiong G., Partial oxidation of propane to syngas overnickel supported catalysts modified by alkalimetal oxides and rare-earth metal oxides, Appl. Catal. A:Gen., 211(2), 145-152 (2001)
  29. Sehested J. Carlsson A. Janssens T. V. W.Hansen P. L. and Datye A. K., Sintering ofNickel Steam-Reforming Catalysts onMgAl2O4 Spinel Supports, J. Catal., 197(1),200-209 (2001)
  30. Pfender E., Thermal Plasma Technology:Where Do We Stand and Where Are WeGoing?, Plasma Chem. Plasma Process,19(1), 1-31 (1999)
  31. Tanahashi N. Takeuchi A. and Tanaka K., Metal Recovery From the Waste MagnesiaChromiaBricks With Arc Plasmas, J. Eng.Res. Technol., 123(1), 76-80 (2001)
  32. Chatterjee P. K, Datta A. B and Kundu K. M., Fluidized bed gasification of coal, Can. J.Chem. Eng., 73(2), 204-210 (1995)
  33. Herguido J. Corella J. and Gonzalez-Saiz J., Steam gasification of lignocellulosic residuesin a fluidized bed at a small pilot scale, Effectof the type of feedstock, Ind. Eng. Chem. Res.,31(5), 1274-1282 (1992)
  34. Judd M. R., In: 2nd International Coal & GasConversion Conference, Pretoria, 23 (1987)
  35. Liu S. Xiong G. Yang W. Xu L. Xiong G. andLi C., Partial oxidation of ethane to syngasover nickel-based catalysts modified by alkalimetal oxide and rare earth metal oxide, Catal.Lett. 63(3-4), 167-171 (1999)
  36. Huff M. Torniainen P. M. and Schmidt L.D., Partial oxidation of alkanes over noble metalcoated monoliths, Catal. Today, 21(1), 113-128 (1994)
  37. Wong F. F. Lin C. M. Chang C. P. Huang J.R. Yeh M. Y. and Huang J. J., Recovery andReduction of Spent Nickel Oxide Catalyst viaPlasma Sintering Technique, Plasma Chem.Plasma Process., 26(6), 585-595 (2006)
  38. Fischer K. Bipp H. P. Riemschneider P.Leidmann P. Bieniek D. and Kettrup A., Utilization of biomass residues for theremediation of metal-polluted soils, Environ.Sci. Technol., 32(14), 2154–2161 (1998)
  39. Steele M.C. and Pichtel J., Ex-situ remediationof a metal contaminated superfund soil usingselective extractants, J. Environ. Eng., 124(7),639–645 (1998)
  40. Papassiopi N. Tambouris S. and KontopoulosA., Removal of heavy metals from calcareous contaminated soil by edta leaching, Water AirSoil Pollut., 109(1-4), 1–15 (1999)
  41. Garrabrants A. C. and Kosson D. S., Use of achelating agent to determine the metalavailability for leaching from soils and wastes, Waste Manage., 20(2-3), 155–165 (2000)
  42. Kim C. and Ong S. K., Recycling of leadcontaminatedEDTA wastewater, J. Hazard.Mater., 69(3), 273–286 (1999)
  43. Wasay S. A. Barrington S. and Tokunaga S., Organic acids for the in situ remediation ofsoils polluted by heavy metals: soil flushingcolumns, Water Air Soil Pollut., 127(1-4),301–314 (2001)
  44. Bergers P. J. M. and de Groot A. C., Theanalysis of EDTA in water by HPLC, WaterRes., 28(3), 639–642 (1994).
  45. Kari F. G. and Giger W., Modeling thephotochemical degradation ofethylenediaminetetraacetate in the river Glatt, Environ. Sci. Technol., 29(11), 2814–2827(1995)
  46. Goel S. Nigam K. D. P and Pant K, K,, Extraction of Nickel from spent catalyst usingfresh and recovered EDTA, J. Hazard. Mater.,171(1-3), 253-261 (2009)
  47. Vadamalar R. Mani D. and Balakrishnan R., Ultrasonic Study of Binary Liquid Mixtures ofMethyl Methacrylate with Alcohols, Res.J.Chem.Sci., 1(9), 79-82 (2011)
  48. Mason T.J., Advances in Sonochemistry,Elsevier Science Publishers, New York, 1–6(1990–2001)
  49. Suslick K. S., Ultrasound: its Chemical,Physical and Biological Effects, VCH, NewYork (1988)
  50. Crum L. A., Mason T.J., Reisse J. and SuslickK. S., Sonochemistry and Sonoluminescence, Kluwer Academic Publishers (1999)