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Abstract 

Hartmann’s equations of state formulated for liquids, polymers and nanomaterials have been demonstrated in the present study to 

satisfy the thermodynamic constraints at extreme compressions. This reveals the applicability of Hartmann’s equation for materials at 

very high pressures. We have also derived expressions for the pressure derivatives of bulk modulus up to third order. The expressions 

thus derived have been verified with the help of identities which are valid at extreme compressions. An application of the Hartmann 

equation has been presented here to predict the pressure-volume-temperature relationships for NaCl crystal and CaSiO3 perovskite 

mineral. The results obtained in the present study are found to compare well with the experimental data.   
 

Keywords  
 

Introduction 

An equation of state (EOS) formulation is an important tool 

for investigating the pressure P- volume V- temperature T 

relationship
1
. Volumes of a material at high pressures and 

high temperatures are needed for understanding its 

thermoelastic behaviour
2, 3

. The thermoelastic properties can 

be described in terms of pressure derivatives of the bulk 

modulus
4-6

. An equation of state must satisfy the boundary 

conditions at zero – pressure as well as in the limit of infinite 

pressure. The Grüneisen parameter provides a useful link 

between thermal and elastic properties of materials
2, 3, 6, 7

. 

There exists an equation of state due to Hartmann
8
 which is 

based on the fundamental thermodynamic principles
9, 10

. This 

EOS is capable of predicting the changes in pressure as well 

as in temperature. An application of the Hartmann equation 

has been presented here to predict the pressure-volume-

temperature relationships for NaCl crystal and CaSiO3 

perovskite mineral. The results obtained in the present study 

are found to compare well with the experimental data. 

 

Material and Methods 

The Hartmann EOS representing the relationship between P, 

V and T as follows
8
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where 0K is the bulk modulus at P=0. The exponent n is a 

material-dependent constant. 0T is the temperature 

characteristic of the material. Equation (1) gives 0VV   at 

P=0 and T=0. This is the boundary condition at initial values 

of P and T. At very high pressures in the limit of extreme 

compression, we have the volume V tends to be fulfilled by 

any EOS in order to be physically acceptable. In case of the 

Hartmann EOS, these conditions are satisfied. 

 

An expression for the bulk modulus  
T

dVdPVK   is 

obtained by differentiating Eq. (1) with respect to pressure at 

constant temperature. Thus we find  
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At P=0, 0VV  , we have 0KK  , the zero-pressure 

value of bulk modulus. With the increase in pressure P, the 

volume ratio V/V0 decreases, and both the terms on right side 

of Eq. (2) increase rapidly, and become infinitely large. Thus 

the bulk modulus K tends to infinity in the limit of infinite 

pressure. At infinite pressure, Eq. (2) with the help of Eq. (1) 

gives 
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Equation (2) gives the following expression for the pressure 

derivative of bulk modulus  

  nPK
K

n
n

dP

dK
K '                           (4) 

At P=0, Eq. (4) yields 
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At infinite pressure, we use Eq. (3) in Eq. (4) to obtain 

 '

 Kn                                                                 (6) 

Equation (5) and (6) then yield 
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Thus values of n and '

K are different for different materials 

since '

0K  is a material-dependent parameter. This is 

consistent with the earlier findings due to Stacey
11, 12 

who 

derived the following identity 
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Equation (8) is satisfied by equations (3) and (6). 

Expressions for higher pressure derivatives of bulk modulus 

are obtained from eq (4) by differentiating it with respect to 

pressure 

                   KPKnKK /'1'' 2                            (9) 

 

where 22'' dPKdK  . We multiply ''K  by K so that  

''KK  is dimensionless. Eq (9) reveals that ''KK  is 

negative at zero-pressure and at finite pressures, and it 

becomes zero at extreme compression (V→0, and P→∞) 

because Eq (8) becomes valid. eq (9) on differentiating with 

respect to pressure yields 
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Where 33''' dPKdK  . We multiply  '''K  by 2K  so 

that '''2KK  is dimensionless. At extreme compression  

'''2KK  tends to zero, since ''KK  also tends to zero. But 

their ratio remains finite at extreme compression, as eq (10) 

gives 
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At zero pressure ''KK  and '''2KK  both are finite 
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The Grüneisen parameter γ provides useful link between 

thermal and elastic properties of materials. We have the 

following relationship 

                    
6

1
'

2

1
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so that, at infinite pressure we have 
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According to the Hartmann EOS 2/'

0

' KK 
, we have 
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Since 
'

0K  is always greater than one,   is always greater 

than zero, i.e. the Grüneisen parameter γ remains positive 

and finite at extreme compression. There exists an identity 

between the pressure derivatives of bulk modulus at infinite 

pressure given as follows
13
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Equation (9) based on the Hartmann EOS gives 
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Equations (11) and (18) satisfy the identity given by Eq. 

(17). We have thus found that the Hartmann EOS
8-10, 14, 15

 is 

consistent with the infinite pressure behaviour of materials
11-

13
. 

Results and Discussion 

The results for isothermal compressions derived from the 

Hartmann EOS are given in table 1 for CaSiO3 and in Figure 

1 for NaCl. In both the cases the experimental data
16,17

 have 

been included in the Table as well as Figure for the sake of 

comparison. It is found that the results obtained in the 

present study using the Hartmann equation of state (EOS) are 

in good agreement for NaCl crystal as well as CaSiO3 

perovskite mineral. The pressure-volume-temperature 

relationships provide useful informations regarding various 

thermodynamic processes.  

 

At constant temperature, i.e. isothermal conditions by 

studying pressure-volume relationships we can determine the 

isothermal bulk modulus  
T

dVdPVK   of the materials. 

At constant pressure, i.e. isobaric conditions the volume-

temperature relationships yield the relationship for the 

thermal expansivity   
P

dTdVV1 .At constant 

volume, i.e. isochoric thermal conditions pressure-

temperature relationships are useful for predicting the 

thermal pressures. In this case we make use of identity 

  TV
KdTdP  . 

 

Conclusion 

We have found that the Hartmann equation of state which 

has been widely applicable for liquids, polymers and 

nanomaterials, is consistent with the infinite pressure 

behavior of solids. The Grüneisen parameter γ plays central 

role in explaining thermal and elastic properties of materials. 

The identity between the pressure derivatives of bulk 

modulus at infinite pressure used here satisfy by the 

Hartmann equation of state (EOS). The pressure-volume-

temperature relationships, as discussed at length by Stacey 

and Davis, in the present study are found to compare well 

with the experimental data. 
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Table 1 

Results for CaSiO3, volumes (Å3) calculated from the Hartmann EOS (eq. 1), and experimental values from Wang et al.
16

 

T = 4.8,            K0 = 232 GPa              KT = 7.2 x 10
-3

 GPa K
-1

 

T(K) P(GPa) 

V(Å
3
) 

Calculated Experimental 

301 2.66 45.08 45.03 

303 4.15 44.81 44.87 

303 6.54 44.40 44.38 

303 7.94 44.17 44.14 

302 8.97 44.00 44.01 

304 9.63 43.90 43.93 

306 10.07 43.83 43.83 

570 4.68 45.06 45.12 

572 7.09 44.63 44.63 

570 8.48 44.39 44.37 

575 9.50 44.23 44.22 

572 10.15 44.12 44.12 

572 10.58 44.05 44.07 

771 5.04 45.26 45.25 

772 7.52 44.81 44.78 

774 8.97 44.56 44.51 

770 9.98 44.38 44.38 

769 10.58 44.28 44.28 

769 10.92 44.23 44.23 

980 5.51 45.46 45.44 

976 9.37 44.74 44.71 

980 10.49 44.55 44.53 

977 11.06 44.45 44.45 

970 11.35 44.40 44.41 

1172 11.69 44.59 44.54 

1368 12.04 44.77 44.76 
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