Some Construction Methods of Variance and Efficiency Balanced Block Designs with Repeated Blocks

Awad Rashmi ${ }^{1}$ and Banerjee Shakti ${ }^{2}$
${ }^{1}$ Dept. of Statistics, Govt. Holkar Science College, Indore, MP, INDIA
${ }^{2}$ School of Statistics, D.A.V.V., Indore, MP, INDIA

Available online at: www.isca.in
Received $10^{\text {th }}$ April 2012, revised $16^{\text {th }}$ May 2012, accepted $21^{\text {st }}$ June 2012

Abstract

Some construction methods of the variance and efficiency balanced block designs with repeated blocks are proposed which are based on the incidence matrices of the known balanced incomplete block designs with repeated blocks.

Keywords: Balance incomplete block design, balance incomplete block design with repeated blocks, variance balance design, efficiency balance design.

Introduction

The concept of repeated blocks came into existence in Van Lint ${ }^{1}$. He noticed that many of the BIB designs constructed by Hanani ${ }^{2}$ have repeated blocks. In the early years, on the concept of repeated blocks, different type of work has been done by many statisticians, like Parker ${ }^{3}$, Seiden ${ }^{4}$, Stanton ${ }^{5,6}$, Sprott ${ }^{7,8}$, Ryser ${ }^{9}$ etc. In 1973, Van Lint systematically studied the problems of the construction of BIB designs with repeated blocks. In the year 1977, Foody and Hedayat ${ }^{10}$ presented some potential applications of the balanced incomplete block designs with repeated blocks. Designs with repeated blocks with the equireplications and with equal size of each block were discussed in the literature; Hedayat and Li^{11}, Hedayat and Hwang ${ }^{12}$. However from the practical point of view, it may not be possible to construct the design with equi block size accommodating the equireplication of each treatment in all the blocks. Here we consider a class of block designs called variance and efficiency balanced block designs which can be made available in unequal block sizes and for varying replications.

From the point of view of application there is no reason to exclude the possibility that a BIB design would contain repeated blocks. For a variety of reasons, it is desirable to have the balanced incomplete block designs with the block repetitions, because it might be less expensive and easier to implement. In many applications, the experimenter may not wish to run certain treatment combinations. For example, it is physically impossible to run three or more treatment combinations in one block. Thus we need BIB designs with repeated blocks. The set of all distinct blocks in a block design is called the support of the design and the cardinality of the support is denoted by b^{*} and is referred to as the support size of the design.

It's not always necessary that every variance balanced design is also an efficiency balanced but in the present paper we proposed some construction methods of variance balanced block designs
with repeated blocks which are also efficiency balanced with unequal block sizes and unequal replications. For this we take the reference of some construction methods of variance balanced and efficiency balanced block designs with repeated blocks given in research papers of Bronislaw Ceranka and Malgorzata Graczyk ${ }^{13-15}$. Using these construction schemes, which are based on the incidence matrices of the known BIB designs with repeated blocks; we proposed some new construction methods of variance and efficiency balanced designs with repeated blocks for v treatments which are generalization of the schemes given in reference papers.

Let us consider v treatments arranged in b blocks, such that the $j^{\text {th }}$ block contains k_{j}. experimental units and the $i^{\text {th }}$ treatment appears r_{i} times in the entire design, $i=1,2, \ldots \ldots \ldots, v ; j=$ $1,2, \ldots \ldots \ldots$, . For any block design there exist a incidence matrix $\mathrm{N}=\left[\mathrm{n}_{\mathrm{ij}}\right]$ of order $v \times \mathrm{b}$, where n_{ij} denotes the number of experiment units in the $\mathrm{j}^{\text {th }}$ block getting the $\mathrm{i}^{\text {th }}$ treatment. When $\mathrm{n}_{\mathrm{ij}}=1$ or $0 \forall \mathrm{i}$ and j , the design is said to be binary. Otherwise it is said to be nonbinary. In this paper we consider binary block designs only. The following additional notations are used $\mathrm{k}=$ [$\left.\mathrm{k}_{1} \mathrm{k}_{2} \ldots . . \mathrm{k}_{\mathrm{b}}\right]^{\prime}$ is the column vector of block sizes, $\mathrm{r}=\left[\mathrm{r}_{1}\right.$ $\left.r_{2} \ldots . r_{v}\right]^{\prime}$ is the column vector of treatment replication, $K_{b x b}=$ $\operatorname{diag}\left[\mathrm{k}_{1} \mathrm{k}_{2} \ldots . . \mathrm{k}_{\mathrm{b}}\right], \mathrm{R}_{\mathrm{vxv}}=\operatorname{diag}\left[\mathrm{r}_{1} \mathrm{r}_{2} \ldots . . \mathrm{r}_{\mathrm{v}}\right], \Sigma \mathrm{r}_{\mathrm{i}}=\Sigma \mathrm{k}_{\mathrm{j}}=\mathrm{n}$ is the total number of experimental units, with this $N 1_{b}=\underline{r}$ and $\mathrm{N}^{\prime} 1_{\mathrm{v}}$ $=\underline{k}$, Where 1_{a} is the a $\times 1$ vector of ones.

The information matrix for treatment effects C defined below as
$\mathrm{C}=\mathrm{R}-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$
Where $\mathrm{R}=\operatorname{diag}\left(\mathrm{r}_{1}, \mathrm{r}_{2} \ldots \ldots \ldots . \mathrm{r}_{v}\right), \mathrm{K}=\operatorname{diag}\left(\mathrm{k}_{1}, \mathrm{k}_{2} \ldots \ldots \ldots . . \mathrm{k}_{\mathrm{b}}\right)$
Though there have been balanced designs in various sense (see Puri and Nigam ${ }^{16}$, Calínski ${ }^{17}$, we will consider a balanced design of the following type. A block design is said to be
balanced if every elementary contrast of treatment is estimated with the same variance $\left(\operatorname{Rao}^{18}\right)$. In this sense this design is also called a variance balance design.

It is well known that block design is a variance balanced if and only if it has
$C=\eta\left(I_{v}-\frac{1}{v} 1_{v} 1_{v}{ }^{\prime}\right)$
where η is the unique nonzero eigenvalue of the matrix C with the multiplicity $v-1, \mathrm{I} v$ is the $v \times v$ identity matrix. For binary block design
$\eta=\frac{\sum_{i=1}^{v} r_{i}-b}{v-1}$
(Kageyama and Tsuji1 ${ }^{19}$)
In particular case when block design is a balanced incomplete block design then $\eta=\frac{v r-b}{v-1}$.
A block design is called efficiency balanced if every contrast of treatment effects is estimated through the design with the same efficiency factor.
Let us consider the matrix M_{o} given by Calínski ${ }^{20}$
$\mathrm{M}_{\mathrm{o}}=\mathrm{R}^{-1} \mathrm{NK}^{-1} \mathrm{~N}^{\prime}-\frac{1}{n} 1_{v} \mathrm{r}^{\prime}$
$M_{0} S=\mu S$
Where $T=\left[T_{1} T_{2} \ldots \ldots . T_{v}\right]^{\prime}$ is the vector of treatment totals; T_{i} is the total yield for the $\mathrm{i}^{\text {th }}$ treatment. μ is the unique non zero eigen value of M_{o} with multiplicity ($v-1$) and M_{o} is given as (4).

Cali'nski ${ }^{20}$ showed that for such designs every treatment contrast is estimated with the same efficiency $(1-\mu)$ and N is a EB block design if and only if
$\mathrm{M}_{\mathrm{o}}=\mu\left(\mathrm{I}_{\mathrm{v}}-\frac{1}{n} 1_{\mathrm{v}} \mathrm{r}^{\prime}\right)$
Kageyama ${ }^{21}$ proved that for the EB block design N, eq ${ }^{\mathrm{n}}$ (5) is fulfilled if and only if
$\mathrm{C}=(1-\mu)\left(\mathrm{R}-\frac{1}{n} \mathrm{r} \mathrm{r}^{\prime}\right)$

Construction for v treatments

Let $N_{i}, i=1,2, \ldots, t$, be the incidence matrix of the balanced incomplete block design with repeated blocks with the parameters $v, b_{i}, r_{i}, k_{i}, \lambda_{i}, b_{i}^{*}$. Let C_{i} be the C-matrix of this design defined by $\mathrm{N}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots .$, t. Now, we form the matrix N as
$\mathrm{N}=\left[\begin{array}{llll}\mathrm{N}_{1} & \mathrm{~N}_{2} \ldots \ldots . & \mathrm{N}_{\mathrm{t}}\end{array}\right]$
and prove the following theorem.
Theorem 1 : Block design with the incidence matrix N of the form (7) is the variance and efficiency balanced block design with repeated blocks with the parameters
$\boldsymbol{V}, b=\sum_{i=1}^{t} b_{i}, \quad r=\sum_{i=1}^{t} r_{i}$,
$k=\left[\begin{array}{llll}k_{1.1} 1_{b_{1}} & k_{2.1} 1_{b_{2}} & \cdots & k_{t .1} 1_{1}\end{array}\right]^{\prime}$,
$\lambda=\sum_{i=1}^{t} \lambda_{i}$ and $b^{*}=\sum_{i=1}^{t} b_{i}^{*}$.
Proof: The matrix C of the block design (7) is
$C=r I_{v}-\sum_{i=1}^{t} \frac{1}{k_{i}} N_{i} N_{i}^{\prime}$
$C=\sum_{i=1}^{t}\left[\left(r_{i}-\frac{1}{k_{i}}\left(r_{i}-\lambda_{i}\right)\right) I_{v}-\frac{\lambda_{i}}{k_{i}} 1_{v} 1_{v}\right]$
$C=\sum_{i=1}^{t} C_{i}=\sum_{i=1}^{t} \eta_{i}\left[I_{v}-\frac{1}{v} 1_{v} 1_{v}\right]=\eta\left[I_{v}-\frac{1}{v} 1_{v} 1_{v}\right]$
where $\eta=\sum_{i=1}^{t} \eta_{i}{ }^{\prime} \quad \eta_{i}$ is the unique nonzero eigenvalue of the matrix $\mathrm{C}_{\mathrm{i}}, i=1,2, \ldots \ldots \ldots, t$. So, the theorem is proved and the Variance and Efficiency is given as,
Variance $=v \sum_{i=1}^{t}\left(\frac{\lambda_{i}}{k_{i}}\right)$
Efficiency $=1-\frac{v}{r} \sum_{i=1}^{t}\left(\frac{\lambda_{i}}{k_{i}}\right)=\frac{1}{r} \sum_{i=1}^{t}\left(\frac{r_{i}-\lambda_{i}}{k_{i}}\right)$
Example 1 : Let us consider the balanced incomplete block design with the parameters $v=7, \mathrm{~b}_{1}=21, \mathrm{r}_{1}=6, \mathrm{k}_{1}=2, \lambda_{1}=1$, $\mathrm{b}_{1}{ }^{*}=21$ with the incidence matrix N_{1} given through the blocks $(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2$, $6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6)$, $(5,7),(6,7)$ and the balanced incomplete block design with the parameters $v=7, \mathrm{~b}_{2}=14, \mathrm{r}_{2}=6, \mathrm{k}_{2}=3, \lambda_{2}=2, \mathrm{~b}_{2}{ }^{*}=7$ with the incidence matrix N_{2} given through the blocks (1, 2, 4), (2, 3, 5), $(3,4,6),(4,5,7),(1,5,6),(2,6,7),(1,3,7)$, each block is repeated two times. Based on the matrices N_{1} and N_{2} for $t=2$ we form the incidence matrix N in the form (7) of the variance and efficiency balanced block design with repeated blocks with the parameters $v=7, b=21+14=35, r=6+6=12, \lambda=1+2=3, b^{*}$ $=21+7=28$ and $k=\left[\begin{array}{ll}21_{21} & 31_{14}^{\prime}\end{array}\right]^{\prime}$ and the structure is variance and efficiency balanced.

Hence the matrix C is given as $C=\frac{49}{6}\left[I_{7}-\frac{1}{7} 1_{7} 1_{7}\right]$ and
Variance $=7\left(\frac{1}{2}+\frac{2}{3}\right)=49 / 6=8.1667$
Efficiency $=1-\frac{7}{12}\left(\frac{1}{2}+\frac{2}{3}\right)=23 / 72=0.319444$

Some New Construction methods of Variance and Efficiency Balanced Block Designs with repeated blocks

Theorem 2: Let N_{1} be the incidence matrix of the balanced incomplete block design with repeated blocks with the parameters $v, \mathrm{~b}_{1}, \mathrm{r}_{1}, \mathrm{k}_{1}, \lambda_{1}, \mathrm{~b}_{1} *$. Then the Block design with the incidence matrix N of the form
$\mathrm{N}=\left[\begin{array}{ll}\mathrm{N}_{1} & 1_{\mathrm{v}}\end{array}\right]$
is the variance and efficiency balanced block design with repeated blocks with the parameters $v, \mathrm{~b}=\mathrm{b}_{1}+1, \mathrm{r}=\mathrm{r}_{1}+1, \lambda=$ $\lambda_{1}+1, \mathrm{~b}^{*}=\mathrm{b}_{1}{ }^{*}+1, k=\left|\boldsymbol{k}_{1.1} 1_{b_{1}}, \boldsymbol{V}\right|$ and the variance and efficiency is given as ,
Variance $=1+v\left(\frac{\lambda_{1}}{k_{1}}\right)$
Efficiency $=1-\frac{1}{r}\left\{1+v\left(\frac{\lambda_{1}}{k_{1}}\right)\right\}=\frac{1}{r}\left(\frac{r_{1}-\lambda_{1}}{k_{1}}\right)$
Theorem 3 : Let N_{1} and N_{2} be the incidence matrices of the balanced incomplete block design with repeated blocks with the parameters $v, \mathrm{~b}_{1}, \mathrm{r}_{1}, \mathrm{k}_{1}, \lambda_{1}, \mathrm{~b}_{1}{ }^{*}$ and $v, \mathrm{~b}_{2}, \mathrm{r}_{2}, \mathrm{k}_{2}, \lambda_{2}, \mathrm{~b}_{2}{ }^{*}$ respectively. Then the block design with the incidence matrix N of the form
$\mathrm{N}=\left[\begin{array}{lll}\mathrm{N}_{1} & \mathrm{~N}_{2} & 1_{v}\end{array}\right]$
is the variance and efficiency balanced block design with repeated blocks with the parameters $v, b=b_{1}+b_{2}+1, r=r_{1}+$ $\mathrm{r}_{2}+1, \quad \lambda=\lambda_{1}+\lambda_{2}+1, \mathrm{~b}^{*}=\mathrm{b}_{1}{ }^{*}+\mathrm{b}_{2}{ }^{*}+1$, $k=\left|\begin{array}{lll}k_{1} \cdot 1_{b_{1}} & k_{2} 1_{b_{2}}^{\prime} & v\end{array}\right|$ and the variance and efficiency is given as,
Variance $=1+v\left(\frac{\lambda_{1}}{k_{1}}+\frac{\lambda_{2}}{k_{2}}\right)$
Efficiency $=1-\frac{1}{r}\left\{1+v\left(\frac{\lambda_{1}}{k_{1}}+\frac{\lambda_{2}}{k_{2}}\right)\right\}=\frac{1}{r}\left(\frac{r_{1}-\lambda_{1}}{k_{1}}+\frac{r_{2}-\lambda_{2}}{k_{2}}\right)$
Theorem 4 : Let $\mathrm{N}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{t}$, be the incidence matrix of the balanced incomplete block design with repeated blocks with the parameters $v, b_{i}, r_{i}, k_{i}, \lambda_{i}, b_{i}{ }^{*}$. Then block design with the incidence matrix N of the form
$\mathrm{N}=\left[\begin{array}{lllll}\mathrm{N}_{1} & \mathrm{~N}_{2} & \ldots & \ldots & \mathrm{~N}_{\mathrm{t}} \\ 1_{v}\end{array}\right]$
is the variance and efficiency balanced block design with repeated blocks with the parameters V,
$b=\sum_{i=1}^{t} b_{i}+1, \quad r=\sum_{i=1}^{t} r_{i}+1, \lambda=\sum_{i=1}^{t} \lambda_{i}+1$,
$b^{*}=\sum_{i=1}^{\prime} b_{i}^{*}+1, k=\left[\begin{array}{lllll}k_{1 .} 1_{b_{1}} & k_{2 .} 1_{b_{2}} & \cdots & k_{t} 1_{b,} & v\end{array}\right]$
and the variance and efficiency is given as,
Variance $=1+v \sum_{i=1}^{t} \frac{\lambda_{i}}{k_{i}}$
Efficiency $=1-\frac{1}{r}\left\{1+v \sum_{i=1}^{t}\left(\frac{\lambda_{i}}{k_{i}}\right)\right\}=\frac{1}{r} \sum_{i=1}^{t}\left(\frac{r_{i}-\lambda_{i}}{k_{i}}\right)$
Theorem 5 : Let N_{i} be the incidence matrix of the balanced incomplete block design with repeated blocks with the parameters $v, b_{i}, r_{i}, k_{i}, \lambda_{i}, b_{i}{ }^{*}$. Then block design with the incidence matrix N of the form
$N=[N_{i} \overbrace{1_{v}} \overline{1_{v}}{\stackrel{\rightharpoonup}{\cdots} \ldots \ldots \ldots \cdots 1_{v}}_{p-\text { times }}]$
is the variance and efficiency balanced block design with repeated blocks with the parameters ν,
$b=b_{i}+p, r=r_{i}+p, \lambda=\lambda_{i}+p$,

then the variance and efficiency is given as
Variance $=\left(v \frac{\lambda_{i}}{k_{i}}+p\right)$
Efficiency $=\left[1-\frac{v \lambda_{i}+p k_{i}}{r k_{i}}\right]=\left(\frac{r_{i}-\lambda_{i}}{r k_{i}}\right)$
Theorem 6 : Let N_{i} be the incidence matrix of the balanced incomplete block design with repeated blocks with the parameters $v, b_{i}, r_{i}, k_{i}, \lambda_{i}, b_{i}{ }^{*}$. Then block design with the incidence matrix N of the form
$N=\left[\begin{array}{lll}N_{i} N_{i} \ldots \ldots \ldots \ldots & \cdots N_{i} & 1_{v}\end{array}\right]$
is the variance and efficiency balanced block design with repeated blocks with the parameters $v, b=p b_{i}+1$,
$r=p r_{i}+1, \lambda=p \lambda_{i}+1, b^{*}=b_{i}^{*}+1$
and $k=[\overbrace{k_{i .} 1_{b_{i}} k_{i .1} 1_{b_{i}} \cdots \ldots \ldots \ldots k_{i .1}^{p-\text { times }}-\cdots \overline{b_{i}}} v]$
and the variance and efficiency is given as,
Variance $=\left(1+p v \frac{\lambda_{i}}{k_{i}}\right)$
Efficiency $=\left[1-\frac{p v \lambda_{i}+k_{i}}{r k_{i}}\right]=\left[\frac{p\left(r_{i}-\lambda_{i}\right)}{r k_{i}}\right]$
Theorem 7: Let $\mathrm{N}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{t}$, be the incidence matrix of the balanced incomplete block design with repeated blocks with the
parameters $v, b_{i}, r_{i}, k_{i}, \lambda_{i}, b_{i}{ }^{*}$. Then block design with the incidence matrix N of the form

$$
N=\left[\begin{array}{lllll}
N_{1} & N_{2} & \cdots \cdots \cdots & N_{t} & \overbrace{1_{v}} \frac{p-\text { times }}{1_{v} \cdots \cdots \cdots \cdots} \cdots_{v} \tag{13}
\end{array}\right]
$$

is the variance and efficiency balanced block design with repeated blocks with the parameters \boldsymbol{V},
$b=\sum_{i=1}^{t} b_{i}+p, r=\sum_{i=1}^{t} r_{i}+p, \lambda=\sum_{i=1}^{t} \lambda_{i}+p$,

$b^{*}=\sum_{i=1}^{t} b_{i}^{*}+1$ and the variance and efficiency is given as,
Variance $=\left[v \sum_{i=1}^{t}\left(\frac{\lambda_{i}}{k_{i}}\right)+p\right]$

Efficiency $=1-\frac{1}{r}\left\{p+v \sum_{i=1}^{t}\left(\frac{\lambda_{i}}{k_{i}}\right)\right\}=\frac{1}{r} \sum_{i=1}^{t}\left(\frac{r_{i}-\lambda_{i}}{k_{i}}\right)$

Conclusion

The construction methods discussed above are flexible enough to incorporate number of incidence matrices of balanced incomplete block design with repeated blocks. In the pattern given in (10), Variance increases but efficiency doesn't show any regular pattern. In the patterns given in (11) and (13), Variance increases and efficiency decreases as unit vector 1_{v} repeated number of times. In the pattern given in (12), Variance and efficiency both increases as incidence matrix N_{i} repeated number of times.

References

1. Van Lint J.H. , Block Designs with repeated blocks and (b, r, λ) $=1$, Journal of Combi Theory Series, (A15), 288-309 (1973)
2. Hanani H., The existence and construction of balanced incomplete block designs, Ann. Math., 32, 361-386 (1961)
3. Parker E.T., Remarks on balanced incomplete block designs, Proc. Amer. Math. Soc., (14), 729-730 (1963)
4. Seiden E. , A supplement to Parker's remarks on balanced incomplete block designs, Proc. Amer. Math. Soc., (14), 731-732 (1963)
5. Stanton R.G. and Sprott D.A. , A family of difference Sets, Can. J. Math., (10), 73-77 (1958)
6. Stanton R.G. and Sprott D.A., Block intersections in incomplete block designs, Cand. Math. Bull., (7), 539-548 (1964)
7. Sprott D.A., A note on balanced incomplete block designs, Can. J. Math., (6), 341-346 (1954)
8. Sprott D.A., Some series of balanced incomplete block designs, Sankhya, (17), 185-192 (1956)
9. Ryser H. and Van Lint J.H., Block Designs with repeated blocks, Discrete Math, (3), 381-396 (1972)
10. Foody W. and Hedayat A., On Theory and Applications of balanced incomplete block designs with repeated blocks, The annals of statistics, 5 (5), 932-945(1977)
11. Hedayat A. and Li Shuo-yen R., The trade off method in the construction of balanced incomplete block designs with repeated blocks, The annals of Statistics, 7, 1277-1287 (1979)
12. Hedayat A. and Hwang H. L., BIB $(8,56,21,3,6)$ and BIB (10, 30, 9, 3, 2) designs with repeated Blocks, J. Comb. Th. (A36), 73-91 (1984)
13. Ceranka B. and Graczyk M., Variance Balanced Block Designs with repeated blocks, Applied Mathematical Sciences, Hikari Ltd., 1 (55), 2727-2734 (2007)
14. Ceranka B. and Graczyk M. , Some new construction methods of Variance Balanced Block Designs with repeated Blocks, Metodološki Zvezki, 5 (1), 1-8(2008)
15. Ceranka, B. and Graczyk, M. , Some notes about Efficiency Balanced Block Designs with repeated blocks, Metodološki Zvezki, 6(1), 69-76 (2009)
16. Puri, P.D. and Nigam, A.K., Balanced Block Designs, Commun. Statist. - Theor. Math., (A6), 1171-1179 (1977)
17. Caliński, T., On the notation of balance block designs, In G. Barra et. al. (Eds.), Recent Developments in Statistics, Amsterdam, North-Holland Publishing Company, 365-374 (1977)
18. Rao V.R., A note on balanced designs, Ann. Math. Statist.,(29), 290-294 (1958)
19. Kageyama S. and Tsuji T., Inequality for equireplicated narray block designs with unequal block Sizes, Journals of Statistical Planning and Inferences, 3, 101-107 (1979)
20. Caliński T., On some desirable patterns in block designs, Biometrics, (27), 275-292(1971)
21. Kageyama S., On properties of efficiency balanced designs, Commun. Statist. - Theor. Math., (A9), 597-616 (1974)
22. Dey A., Theory of block designs, Wiley Eastern Limited, (1986)
23. Ghosh D.K. and Shrivastava S.B., A class of balanced incomplete block designs with repeated Blocks, Journal of Applied Statistics, 28 (7), 821-833 (2001)
24. Kageyama S., Construction of balanced block designs, Utilitas Math., (9), 209-229 (1976)
25. Khosrovshahi G.B. and Mahmoodian E.S. , On BIB designs with various support sizes for $\mathrm{v}=9$ and $\mathrm{k}=3$, Communication in Statistics - Simulation and computation, 17(3), 765-770 (1988)
26. RaghavaRao D., A generalization of G.D. Design, Ann. Math. Statist., 31, 756-771 (1960)
27. Raghavarao D., Federer W.T. and Schwager S.J., Characteristics for distinguishing among BIB design with repeated blocks, Journal of Stat. Plan. and Infer., (13), 151163(1986)
28. Whnn H.P., A BIB design with $v=8, \mathrm{~b}=56, \mathrm{k}=3, \mathrm{~b}^{*}=24$ with repeated blocks (1975)
