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Abstract  

In this paper, multi-objective genetic algorithm (MOGA) is used for Pareto optimization of a four degree of freedom vehicle 

vibration model. Vehicle suspension design must fulfill some conflicting criteria. Among those is ride comfort which is 

attained by reducing the sprung mass accelerations via suspension spring and damper. Moreover, good handling or road 

holding capability of a vehicle which is attained by minimize front and rear suspension deflection is a desirable property 

which requires stiff suspension and therefore is in contrast with a vehicle with ride comfort. Therefore, Multi-objective 

Genetic Algorithm (MOGA) is used for Pareto approach optimization of passive suspension system. The important 

conflicting objectives that have been considered in this work are, ride comfort and handling performance. Moreover, this 

approach returns the optimum answers in Pareto form that designer can, by making trade-offs, select desired answer. 

Finally, the simulation result shows that optimization of suspension settings will improve ride comfort and road holding 

capability simultaneously 
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Introduction 

The vehicle suspension system is currently of great interest both 

academically and in the automobile industry worldwide
1
. 

Suspension is the term given to the system of springs, shock 

absorbers and linkages that connects a vehicle to its wheels
2
. 

Suspension systems can be classified as passive, semi-active, 

and active systems. The design of suspension systems involves a 

trade-off between ride comfort, suspension deflection, and tire 

deflection that in this case study is focused on optimization of 

passive suspension systems
3
. When designing vehicle 

suspension systems, it is well-known that spring and damper 

characteristics required for good handling on a vehicle are not 

the same as those required for good ride comfort. Any choice of 

spring and damper characteristic is therefore necessarily a 

compromise between ride comfort and handling
4
. 

 

There are two main parameters to work on during the design, 

the damping and stiffness of the suspension configuration. Soft 

springs result in better ride comfort, but cause poor road 

holding. A high damping ratio decreases the ride comfort but 

causes better road holding. Thus the designer has to make a 

compromise between road holding and ride comfort
5,6

. 

Furthermore, the necessity of trading off among the conflicting 

requirements of the suspensions in terms of comfort and road 

holding capability led to the use of multi- objective optimization 

techniques. 

 

In fact, optimization in engineering design has always been of 

great importance and interest particularly in solving complex 

real-world design problems. In multi-objective optimization 

problems, there are several objectives or cost functions (a vector 

of objectives) to be optimized (minimized or maximized) 

simultaneously. These objectives often conflict with each other 

so that as one objective function improves, another deteriorates. 

Therefore, there is no single optimal solution that is best with 

respect to all the objective functions. Instead, there is a set of 

optimal solutions, well-known as Pareto optimal solutions, 

which distinguishes significantly the inherent natures between 

single- objective and multi-objective optimization problems
7
. A 

Genetic Algorithm is an adaptive search which is used for multi-

objective optimization
8
. 

 

In this paper, a multi-objective genetic algorithm (MOGA) is 

used for multi-objective optimization of a four-degree of 

freedom vehicle vibration model. The conflicting objective 

functions that have been considered for minimization are, 

namely, acceleration of front and rear sprung mass, front and 

rear suspension deflection. The design variables used in the 

optimization of vibration are, namely, vehicle suspension 

stiffness coefficient (���and ��� ), vehicle suspension damping 

coefficient (�� and  ��) and front and rear  tire stiffness(���and 

���). Prominently, it is shown that a trade-off optimum design 

can be verified from those Pareto fronts obtained by multi-

objective optimization process. Finally, the superiority of time 

domain vibration performance of such design point is shown in 

comparison with that given in the literature.  
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Material and Methods 

Half-vehicle dynamics model: A four-degree of freedom vehicle 

with passive suspension, which is adopted from reference 6 is 

shown in figure-1. This model is composed of one sprung mass 

that joints to two unsprung masses (indicate tires). Moreover, 

the effect of degrees of freedom, linear motion (in vertical 

direction for sprung and unsprung masses) and rotating motion 

(pitching motion) for sprung mass, in terms of acceleration, 

velocity and movement, are considered in formulation of motion 

equations
6
. 

 
Figure-2 

Half-car suspension vehicle model 
  

Parameters � , �� , �� , 
, � , � which denote the vehicle’s 

fixed parameters are expressed as sprung mass, forward tire 

mass, rear tire mass, momentum inertia of sprung mass, forward 

and rear tires position in relation to the center of mass, 

respectively.  

 

The differential equations of motion, with respect to the degrees 

of freedom, are derived by the use of Newton–Euler equations 

and can be written as follows: 

��
� = �� + ��, 
�� = ��� cos��� − ��� cos��� , ����� =
−������ − ���� − �� , ����� = −������ − ���� − ��  (1) 

�� = ������ − �
 − � sin���� + ������ − ��
 − ��� cos���� 

�� = ������ − �
 − � sin���� + ������ − ��
 − ��� cos���� 

 

where, �
,��,��  and �  are vertical displacement of the central 

gravity of the sprung mass, vertical displacement of front tire , 

vertical displacement of rear tire and rotating motion (pitching 

motion),respectively. In addition,  ��
, ��� and  ���  represent 

vertical sprung mass velocity, vertical front tire velocity and 

vertical rear  tire velocity, respectively. �
� , ��� , ���  and ��    denote 

vertical sprung mass acceleration, vertical acceleration of the 

central gravity of the sprung mass, vertical  acceleration of front 

tire, vertical  acceleration of rear tire and rotating 

acceleration(pitch acceleration), respectively. Lastly, ��� and ���  represent the excitation via road disturbance, as shown in 

figure-2. Whereas the case study is related to passive 

suspension, the control signals �����,  �����are considered 

zeros. 

Multi-objective Pareto optimization: In most of the engineering 

problems, more than one objective function is important for the 

designer. Usually some conflicting objectives should be 

optimized by the designer at the same time. In such problems, in 

opposite to single objective optimization problems, in which 

there is only one optimum point for the problem, there are a set 

of optimum design vectors which are called Pareto front. The 

important characteristic of these solutions is that none of them 

are dominated by the other ones. The designer based on his or 

her needs chooses one of these solutions as the optimal one
9
. In 

general, Multi-objective optimization can be mathematically 

defined as: Find the vector  ∗ = {#$∗ , #%∗ , … , #'∗ }) to optimize  *�+� = {���+�, ���+�, … , �,�+�}-                                       (2)  

 

Subject to m inequality constraints  ./�+� ≤ 0   � = 1,2, … , �                                                     (3) 

  

and p equality constraints                                                 ℎ/�+� = 0   5 = 1,2, … , 6                               (4)                                      

 

Where   +∗  ∈  89 is the vector of decision or design variables, 

and *�+�  ∈  89  is the vector of objective functions which each 

of them be either minimized or maximized. However, without 

loss of generality, it is assumed that all objective functions are 

to be minimized. Such multi-objective minimization based on 

Pareto approach can be conducted using some definitions.  

 

Definition of Pareto dominance: A vector   

: = [<$, <%, … , <'], is dominance to vector  

> = [?$, ?%, … , ?'] (denoted by : < >)  

 

If and only if :  ∀ B ∈ {1,2, … , �}, C/ ≤ D/  ∧ ∃ 5 ∈ {1,2, … , �}: C/ < DH            (5) 

 

Definition of Pareto optimality: A point +∗  ∈  Ω (Ω is a 

feasible region in 89  satisfying equation (3) and (4) is said to 

be Pareto optimal (minimal) if and only if there is not + ∈  Ω  

which can dominance to +∗. Alternatively, it can be readily 

restated as  ∀ + ∈ Ω, + ≠ +∗ , ∃ B ∈ {1,2, … , �}: �/�+∗� < �/�+�
              

(6) 
 

Definition of Pareto Set: For a given Multi-objective 

optimization problem (MOP), a Pareto set J∗  is a set in the 

decision variable space consisting of all the Pareto optimal 

vectors 

K∗ = {+ ∈ Ω| ∄+ ′ ∈ Ω: *�+ ′� < *�+�}                                (7) 
 

Definition of Pareto front:  For a given MOP, the Pareto front J)∗   is a set of vector of objective functions which are obtained 

using the vectors of decision variables in the Pareto set  J∗, that 

is 

J)∗ = �N� � = OP$� �, P%� �, … , PQ� �R:  ∈ J∗               (8) 
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In other words, the Pareto front KS∗ is a set of the vectors of 

objective functions mapped from K∗. Genetic algorithm (GA) is 

one of the evolutionary algorithms. It uses direct values of 

functions and doesn’t need to function’s derivations. These and 

other properties of GA caused its comprehensive use in 

optimization problems
10

. 

 

The Pareto-based approach of NSGA-II has been recently used 

in a wide area of engineering MOPs because of its simple yet 

efficient non-dominance ranking procedure in yielding different 

level of Pareto frontiers. In this paper modified NSGA-II 

algorithm as a MO tool searches the definition space of decision 

variables and returns the optimum answers in Pareto form
11,12

. 
 

Results and Discussion  

In this section, the multi-objective genetic algorithm (MOGA) is 

used for multi-objective design of vehicle model which has been 

shown in figure-3. Computer simulations are carried out to 

verify the effectiveness of the designed optimal suspension 

system. The corresponding ground displacement for the wheel is 

given by 

    �� =
TU

� �1 − cos�8W���,    B�    .5 ≤ � ≤ .75   �[\  3 ≤ � ≤ 3.25
0                                                                                  ^�ℎ_`aBb_ c                     

 

Where a  denotes bump amplitude. The road disturbance is 

shown in figure-2. It is supposed that the vehicle moves at 

constant velocity v=30 m/s over a road disturbance and It is 

further assumed that the rear tire follows the same trajectory as 

the front tire with a delay of  ∆� = �� + ��/D. 

 
Figure-2 

Typical road disturbance 

 

The input values of fixed parameters are presented at table-1
6
. 

Table-1 

The values of fixed parameters of the model 

M 580 kg eP 
40 kg 

I 910 kg.m
2 ef 30 Kg QP$, Qf$ 10000 N/M QP%, Qf% 100000 N/M 

gP, 
  

gf 
1000 N/M a , b 1.25 m,1.45 m 

In this paper, 5000 ≤ ��� ≤ 15000, 5000 ≤ ��� ≤ 15000, 

500 ≤ �� ≤ 2000, 500 ≤ �� ≤ 2000, 50000 ≤ ��� ≤
150000, 50000 ≤ ��� ≤ 150000  are observed as 6 design 

variables to be optimally found based on multi-objective 

optimization of 4 different objective functions that are 

considered defined as follow: 

h� = i��
 + ���i� = j∑ ���
/ + ���/��9/l�   

h� = i��
 + ���i� = j∑ ���
/ + ���/��  9/l�                             (9)                                          

hm = ‖�� − �
 − asin ��� ‖� = p∑ ���/ − �
/ − asin��/���9/l�    
 hq = ‖�� − �
 + b sin ��� ‖� = p∑ ���/ − �
/ + b sin ��/���9/l�   

 

Now these objective functions are considered in a Pareto 

optimization process to obtain some important trade-offs among 

the conflicting objectives, simultaneously. The evolutionary 

process of the multi-objective optimization is accomplished 

with a population size of 120 which has been chosen with 

crossover probability Pc and mutation probability Pm as 0.9 and 

0.1, respectively. A total number of 116 non-dominated 

optimum design points have been obtained. 

 

It is widely accepted that visualization tools are valuable to 

provide the decision maker a meaningful way to analyze Pareto 

set and select good solutions. For a 2-dimensnal problem it is 

normally easy to make an accurate graphical analysis of the 

Pareto set points, but for higher dimensions it becomes more 

difficult
13

. Therefore, the Level Diagrams method is used to 

visualize a Pareto front. In this method, each point of Pareto 

front must be normalized between 0 and 1 based on its 

minimum and maximum values 

         h/s = max�h/� , h/v = min�h/� , B = 1,2,3       (10) 

    hwx = yz{yz|yz}{yz| 

Provided that the origin of the n-dimensional space is 

considered as ideal point, the distance of the each Pareto front 

point is used to choose optimum points. In this work, Euclidean 

norm   ‖h‖̅� = j∑ h/̅�q/l�  is used for this purpose. Hence the 

point whose distance to the origin is the minimum, that is, the 

lowest value of ‖h‖̅� can be obtained as the most important 

trade-off point. The results of the 4-objective optimization 

process are shown in figure-3. 

 

As it is shown, the point with the lowest vale of ‖h‖̅�  has the 

low value of each objective function. To illustrate the result of 

the optimization process, 5 points are chosen of, which four of 

them have the minimum value of each objective function and 

the fifth one has the minimum value of ‖h‖̅� 
14

. The values of 

the pertinent objective functions are given in table-2. 

 

The time behavior of front and rear sprung mass acceleration of 

the trade-off design point E and the point proposed in reference 

6 are shown for comparison in figures-4-5. It is obvious from 
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these figures that the values of front and rear sprung mass 

acceleration of the design point obtained in this paper are better 

than that by the design point given in reference 6.

.  

 
Figure-3 

Euclidean norm Level Diagrams of Pareto front 

 

Table-2 

The values of objective functions of the best optimal point 

Category �$ �% �� �� ‖�̅‖% 

min �$ (A) 20.37 31.65 0.4760 0.3780 1.1957 

min �% (B) 33.26 18.85 0.3685 0.4934 1.2593 

min �� (C) 35.89 25.72 0.3428 0.4142 1.0818 

min �� (D) 23.09 36.61 0.4853 0.3439 1.4148 

min‖�̅‖% (E) 27.97 26.16 0.3823 0.4137 0.8081 

 

 
Figure-4              Figure-5 

Time responses of front sprung mass acceleration  Time responses of rear sprung mass acceleration 
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Figure-6 

Time responses of front and rear suspension travel 

 

Figure-6 depicts the front and rear suspension travel of the 

trade-off design point E and the point proposed in reference 6 

for comparison purposes. The result shows that the front and 

rear suspension deflection of the design point obtained in this 

paper are better as compared to reference 6. 

 

Conclusion 

In this work, a multi-objective genetic algorithm has been used 

to optimally design vehicle vibration model. The objective 

functions which conflict with each other were selected as 

acceleration of front and rear sprung mass that are related to ride 

comfort  and front and rear suspension deflection that are related 

to road holding ability. The multi-objective optimization of 

vehicle model led to the discovering of some important trade-

offs among those objective functions. The superiority of the 

obtained optimum design points was shown in comparison with 

that reported in the literature. Such multi-objective optimization 

of vehicle model could unveil very important design trade-offs 

between conflicting objective functions which would not have 

been found otherwise. Therefore it is concluded that MOGA 

optimization improves the ride comfort while retaining the 

vehicle maneuverability characteristics, as compared to the 

suspension system that proposed in reference 6. 
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