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Abstract 

Advancements in the field of nanotechnology, have led to a concomitant rise in the incorporation of nanomaterials in 

consumer products. Engineered nanomaterials today are already being used in diverse commercial products in the fields of 

energy, sensing, food technology, electronics, pharmaceuticals, cosmetics, and material applications and have an estimated 

global market value of €20 billion. This has given rise to concerns about the undesirable effects of this technology on the 

environment. This review presents an overview of published studies about likely impact of nanoparticles in the ecosystem, 

their ecotoxicology, threat to human health and the environment and lack of sufficient data in the Indian context.
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Introduction 

Nanoparticles have been around for millions of years but our 
increasing ability to manipulate matter at the nanoscale has 
brought nanotechnology research into focus globally
al predicted a global increase in the number of people working 
in the field of nanotechnology to an estimated total of 6 million 
by 20203. This rapid development in nanotechnology has created 
new opportunities for high performance applications and new 
product innovation. However, there is a growing concern that 
the handling and disposal of engineered nanomaterials, may 
result in new, undesirable impacts on health and the 
environment4-6. Governments worldwide have started 
implementing policies and regulations for evaluating the risks of 
nanomaterials on health and environment7. Several reviews have 
focussed on the problems and risks associated with engineered 
nanomaterials6,8-10. 
 

Engineered Nanoparticles 

The term ‘nanomaterial’ includes a range of materi
unique properties due to their small size11. As per the definition 
adopted by the European Union “engineered nanomaterial” is 
any intentionally manufactured material, containing particles, in 
an unbound state or as an aggregate or as an agglo
where, for 50% or more of the particles in the number size 
distribution, one or more external dimensions is in the size 
range 1 nm to 100 nm’. 
 
Extensive research has been carried out on the toxicology and 
health implications of nanoparticles, a majority of which is 
related to the impact of fullerenes, carbon nanotubes, quantum 
dots and ZnO and titania nanoparticles12

nanoparticle toxicity is largely heterogeneous and also 
conflicting14,15. Understanding and interpretation of resu
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toxicity. 

Nanoparticles have been around for millions of years but our 
increasing ability to manipulate matter at the nanoscale has 
brought nanotechnology research into focus globally1,2. Roco et 
al predicted a global increase in the number of people working 
in the field of nanotechnology to an estimated total of 6 million 

This rapid development in nanotechnology has created 
new opportunities for high performance applications and new 
product innovation. However, there is a growing concern that 
the handling and disposal of engineered nanomaterials, may 
result in new, undesirable impacts on health and the 

Governments worldwide have started 
tions for evaluating the risks of 

. Several reviews have 
focussed on the problems and risks associated with engineered 

The term ‘nanomaterial’ includes a range of materials that show 
. As per the definition 

adopted by the European Union “engineered nanomaterial” is 
any intentionally manufactured material, containing particles, in 
an unbound state or as an aggregate or as an agglomerate and 
where, for 50% or more of the particles in the number size 
distribution, one or more external dimensions is in the size 

Extensive research has been carried out on the toxicology and 
majority of which is 

related to the impact of fullerenes, carbon nanotubes, quantum 
12-14. But data on 

nanoparticle toxicity is largely heterogeneous and also 
. Understanding and interpretation of results is 

complicated because different types of tests have been used to 
study toxicity16. 
 
Difficulties in evaluating their potential impact arise because 
interactions of nanomaterials with the environment may often 
give indistinct signals17,18. Although cha
nanomaterials with high degree of resolution is now achievable 
and some of these techniques maybe used to detect ENPs in 
water and soil samples but identification and quantification of 
ENPs in the environment still pose a challenge
difficulties in detection of nanoparticles arise due to their 
interaction with other contaminants, influencing their 
ecotoxicity. Chemical transformations of nanoparticles in the 
environment and within living systems change their properties 
and reactivity21. Complications in characterization of engineered 
nanoparticles in natural environments arise also due to the fact 
that many engineered nanoparticles have their natural 
counterparts with the same composition.
 
Several papers outline the physicochem
govern particle behaviour in an ecotoxicological context and 
some techniques that may be used to trace and quantify ENPs in 
various biological and chemical matrices
White et al have used Hyperspectral imaging (HSI
the interaction of optically active nanoparticles in biological 
media and cells24,25. 
 

Toxicity of Engineered Nanoparticles

Small size, large surface area and enhanced reactivity are some 
of the features that are responsible for the widesprea
applications of nanomaterials but these very features also 
increase the possibility for them to cross cell membranes and 
enter inside cell organelles unlike bulk materials of the same 
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complicated because different types of tests have been used to 

Difficulties in evaluating their potential impact arise because 
interactions of nanomaterials with the environment may often 

. Although characterization of 
nanomaterials with high degree of resolution is now achievable 
and some of these techniques maybe used to detect ENPs in 
water and soil samples but identification and quantification of 
ENPs in the environment still pose a challenge19,20. Further 
difficulties in detection of nanoparticles arise due to their 
interaction with other contaminants, influencing their 
ecotoxicity. Chemical transformations of nanoparticles in the 
environment and within living systems change their properties 

. Complications in characterization of engineered 
nanoparticles in natural environments arise also due to the fact 
that many engineered nanoparticles have their natural 
counterparts with the same composition. 

Several papers outline the physicochemical principles that 
govern particle behaviour in an ecotoxicological context and 
some techniques that may be used to trace and quantify ENPs in 
various biological and chemical matrices22,23. Roth et al, and 
White et al have used Hyperspectral imaging (HSI) to evaluate 
the interaction of optically active nanoparticles in biological 

Toxicity of Engineered Nanoparticles 

Small size, large surface area and enhanced reactivity are some 
of the features that are responsible for the widespread 
applications of nanomaterials but these very features also 
increase the possibility for them to cross cell membranes and 
enter inside cell organelles unlike bulk materials of the same 
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chemical composition26,27. Results of various in vivo and in 
vitro studies carried out to compare the behaviour of 
nanoparticles with their bulk counterparts point to their 
enhanced toxicity. Several studies focus on the absorption, 
incorporation and translocation of nanoparticles and its effects 
in organisms28. Metal nanoparticles, carbon-based 
nanomaterials and quantum dots are some of the most widely 
studied ENPs. 
 

Formation of reactive oxygen species(ROS) is found to be an 
important route of nanoparticle toxicity29. Generation of free 
radicals and ROS such as hydroxyl radicals leads to oxidative 
stress30-32. 
 
Large surface area of NPs increases its inherent toxicity due to 
enhanced interaction of organisms with these surfaces33-35. 
 

Ecotoxicity of Engineered Nanoparticles 

To assess the impact of nanomaterials both toxicity and 
ecotoxicity need to be taken into account. Whereas toxicity 
deals with the harmful effects of a compound after its uptake, 
ecotoxicity looks at absorption mechanisms, bioavailability and 
its dependence on environmental factors. Transformations 
brought about by factors like pH, temperature, and salinity can 
alter ecotoxicity. 
 

There are concerns that pollution could alter the path of natural 
nano-scale processes. Interaction of nanoparticles with other 
species could lead to their being rendered less harmful or less 
easily absorbed by organisms. Engineered nanomaterials have a 
tendency for aggregation, and agglomeration which depends on 
shape, size and surface area of particles36,21. 
 

Even though ecotoxicity studies of engineered nanoparticles are 
insufficient, data available from several studies indicate that 
several engineered nanoparticles are toxic to organisms even in 
low concentrations. To assess the threat posed by ENPs to 
organisms, data regarding reactivity, transport, absorption 
mechanisms and persistency in the environment is required. 
 

Ecotoxicity of Carbon based nanoparticles 

One of the first engineered nanoparticles to be investigated for 
their ecotoxicity is C60 fullerenes. Oberdörster was one of the 
first to examine that C60 even in concentrations as low as 0.5 
mg/l can cause oxidative damage in fish (large mouth bass; 
Micropterus salmoides)37 Although several publications 
attributed the toxic products to a THF degradation product. 
Adverse health effects of C-60 have since been reviewed and 
debated. Oxidative, genotoxic, and cytotoxic responses have 
been attributed to C-6038,39. These effects vary according to the 
form and chemical modifications of fullerenes40. Although in 
another contradicting report Gharbi et al show C-60 to be a 
powerful anti oxidant. The study involved use of C(60) in acute 
carbon tetrachloride intoxication in rats pointing to the fact that 
in the absence of a polar organic solvent C(60)  could help 
protect the  livers of rats from free-radical damage41. 

Liu Y, et al highlight variations in CNT toxicity through 
alterations in factors such as size, shape, impurities, surface 
charge and agglomeration. They discuss how CNT toxicity 
proceeds through oxidative stress, DNA damage mutation and 
progression towards malignancy and how routes of exposure 
routes influence its behavior42. Several studies highlight the 
dependence of CNT toxicity on exposure conditions, type of 
carbon nanotubes, structural characteristics, surface properties, 
chemical composition dispersion state and concentration43-45 
although more studies would help to gain a more comprehensive 
interpretation of the toxicity of CNTs38. 
 

Ecotoxicity of Inorganic Nanoparticles 

Inorganic ENPs mainly Ag°, titania, ceria, zinc oxide, and iron 
oxides present in various manufactured products are associated 
with biota. Bottero et al found a strong relationship between 
biological malfunctions and the physico-chemical 
characteristics of very small nanoparticles. Ag° and CeO2 are 
found act even at very low concentrations. TiO2 being photo-
active induced toxicity through ROS production46. 
 
Cytotoxic effects of TiO2, ZnO, and CeO2, were compared by 
Xia et al to explain the relationship between physicochemical 
properties and cellular uptake and translocation. ZnO acts via 
formation of reactive oxygen species (ROS), inflammation, and 
apoptosis, CeO2 nanoparticles did not cause inflammation or 
cytotoxicity on absorption by cells but suppressed the formation 
of reactive oxygen species whereas TiO2 even though followed 
the same uptake mechanism as CeO2 but did not exhibit either 
protective or harmful impact. This leads to the conclusion that 
metal oxide nanoparticles could induce varied biological 
responses ranging from cytoprotective to cytotoxic47. 
 
ZnO NPs which have widespread applications in electronics, 
clothing, paints, cosmetic products, catalysts as well as in 
biosensors and medical devices are shown to have cytotoxic and 
genotoxic potential48,49. Various studies showed that ZnO NPs 
were cytotoxic for human lung epithelial cells They are shown 
to upset glucose metabolism in such cells cause mitochondrial 
dysfunction, and induce apoptosis50,51. Han Z et al carried out in- 
vitro studies on mice injected with single doses of ZnO 
nanoparticles which were taken up by Leydig and Sertoli cells, 
causing cytotoxicity due to DNA damage brought about by 
increase in reactive oxygen species52.  Johnson et al showed that 
the exposure to ZnO NPs led to autophagocytosis of immune 
cells, due to rise in the levels of the autophagosome protein 
LC3A reactive oxygen species (ROS) production53. Several 
others reported DNA damage in human epidermal cells, and 
apoptosis in pulmonary epithelial cell lines through ROS and 
oxidative stress even when exposure to ZnO NPs was very 
low49,54,55. 
 
Experimental studies with nanotitania (having applications in 
self cleaning glass, low cost solar cells and cosmetics) have 
shown genotoxicity in aquatic organisms56,57 and documented 
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lung injury and inflammation, toxicity via oxidative stress in 
human cells58-60. 
 
A study investigating the impact of short-term exposures on 
workers in TiO2 manufacturing units, documented increased 
oxidative stress, DNA and protein damage, as well as lipid 
peroxidation in their exhaled breath condensate (EBC) in 
comparison to unexposed control groups61. 
 
Silver nanoparticles are another example of nanoparticles 
commercialized into various products62 and a large amount of 
AgNPs enter into aquatic ecosystems63-65, are bioaccumulated66-

68 and liberate Ag+ and induce formation of ROS69,70. Through 
observation of gene expression pattern Kwok et al suggested 
that disruption of sodium regulation was responsible for toxicity 
of AgNPs. They found that dissolution of silver nanoparticles 
depends on particle size, but coating materials influence 
agglomeration and toxicity71 whereas Guo et al reported that 
particle size plays an important role in the genotoxicity of 
AgNPs. Comparative study of genotoxicities of silver acetate 
and silver nitrate has been done, to see the effect of nanosilver 
vis a vis ionic silver72. 
 
QDs with applications in semiconductor devices, lasers, TV and 
computer displays and for drug delivery may also pose a threat 
to human health. The uptake, transport and toxicity of QD are 
determined by environmental factors as well as properties such 
as size, charge, outer coating of quantum dots, and their 
oxidative and photolytic stability73,74. 
 

Environmental Hazards and Risks 

A lot of the data available from toxicity studies is based on 
experiments performed on organisms in laboratory settings but 
the same results are not always obtained when the experiment is 
carried out in actual environments75. Despite a huge number of 
publications on nanotoxicology, it is still unclear how 
significant the potential adverse impacts are, and whether the 
benefits from nanotechnological developments outweigh the 
risks involved. The current literature on ecotoxicity of 
nanomaterials lacks much of the information needed to evaluate 
potential hazards and quantify exposure with hazard27. 
Assessment of hazard requires evaluation of the form of 
nanomaterial in the environment, transport, transformation 
bioavailability and bioaccumulation.  Gebel, et al suggest 
categorisation of nanoparticles based on exposure pathway and 
mode of action, to evaluate hazards76. A large number of 
ongoing studies utilize different models to evaluate toxicology 
of diverse NPs but there is often a gap between modeled values 
with actual measured values.  
 
There is a need to study sets of ENPs to allow for quantification 
of characteristics such as physicochemical properties and 
biological response outcomes which would help to build dose-
response relation data77,78. 
 

Regulations 

A study79 on nano titania reported the surface water 
concentrations of TiO2 nano particles between 0.012−0.057 µgL 
−1in Europe, 0.002− 0.010 µgL −1in the U.S., and 0.016−0.085 
µgL −1in Switzerland, but such data is hardly available for 
Indian environments80 even though, much higher concentrations 
of nanoparticles due to rapid industrialization and lack of proper 
regulations may be expected81. 
 
Some studies have focussed recently on the presence of 
nanoparticles in commercial products in India and their 
distribution and prevalence in the environment62 and risk 
management.  
 
A few organizations, such as Indian Institute of Toxicology 
Research (IITR) and National Institute of Pharmaceutical 
Education and Research (NIPER), CSIR etc. are involved with 
nanotechnology related risk research in India. 
 
However, there are no nanotechnology specific regulations in 
India currently, though there is an entire range of regulations 
that can extend to nanotechnology applications82,83. India is 
making rapid and noteworthy progress in nanotechnology but 
research on toxicity is not in pace with the rate of introduction 
of new materials84-86. 
 

Conclusion 

Nanotechnology is a field with immense potential and 
applications in all walks of life. In a context of uncertainty about 
the risks there is a need for research to monitor the 
environmental occurrence and hazards related to nanoparticles 
so that benefits from nanotechnology and nanoscience outweigh 
the risks associated with it. 
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