Short Communication

Synthesis and Luminescence Properties of Ce³⁺ doped host YBaB₉O₁₆ Phosphor

Jaiswal S.R.^{1*}, Koparkar K.A.², Bhatkar V.B.¹ and Omanwar S.K.²

¹Department of Physics, Shri Shivaji Science College, Amravati, India ²Department of Physics, Sant Gadage Baba Amravati University, Amravati, India srjaiswal07@gmail.com

Available online at: www.isca.in, www.isca.me

Received 22nd March 2016, revised 28th April 2016, accepted 4th May 2016

Abstract

The blue emitting phosphor Ce^{3+} doped $YBaB_9O_{16}$ was synthesized by re-crystallization method. The prepared Phosphor was characterized by X-ray diffraction (XRD) and it is confirmed that $YBaB_9O_{16}$ crystallites with monoclinic structure formed at 900°C for 4h. Photoluminescence (PL) property was studied by fluorescence spectrophotometer (F-7000). The emission was found to be 415 nm corresponding to blue region monitored at excitation wavelength 360 nm.

Keywords: YBaB₉O₁₆, Ce³⁺, X-ray powder diffraction, Photoluminescence, CIE Diagram.

Introduction

Saubat et al. was firstly reported about LnBaB₉O₁₆ polyborets (Ln= rare earths) and after that it was confirmed by efficient study of the Ln₂O₃-BaO B₂O₃ scheme^{1,2}. These compounds have two dissimilar kinds of cations, Ln³⁺ and Ba²⁺ and by doping via Eu³⁺, Tb³⁺ and Ce³⁺ of different rare earths ions, efficient for red, green and blue color phosphors. Hence these materials are considered to be fitting applicant as general hosts of luminescence materials for tri color lamps. LaBaB₉O₁₆:Pr³⁺ phosphor has been applicable for quantum cutting which absorbed one high energy UV photon and converts in to two low energy visible photons³. Ce³⁺ as an activator in tungstate compounds showed that the luminescent properties of the potential activators Ce³⁺ activated ions have not been adequately studied⁴. The PL excitation and emission spectra of LaBaB₉O₁₆:1%Ce³⁺ gives different emission spectrum at corresponding excitation wavelength⁵. Z. Yanga et al showed that replacement of Gd in place of Y in LnBaB₉O₁₆ host, no change in X-ray diffraction pattern⁶. These types of polyboretes has low melting point and can be easily synthesized at low temperature. In the present work we report the synthesis and luminescence Ce3+ doped YBaB₉O₁₆ phosphor was synthesized re-crystallization method and investigated photoluminescence properties under UV excitation.

Methodology

 $Y_{(1-x)}$ BaB₉O₁₆: $x\%Ce^{3+}$ was prepared by re-crystallization method⁷. The materials taken were yttrium oxide $[Y_2O_3]$ barium nitrate $[Ba(NO_3)_2]$, boric acid $[H_3BO_3]$, cerium nitrate $[Ce(NO_3)_3.6H_2O]$. All materials were taken as AR grade. Table-1 show that molar ratio and molar mass of precursors used in the preparation of phosphor and corresponding chemical reactions.

The yttrium oxide Y_2O_3 was converted to respective nitrate by adding with nitric acid [HNO₃]. All nitrates were taken in china basin and mixed together by adding appropriate amount of double distilled water. Moreover, excess amount of water vaporized up to solution was dried. The dried mixture was heated in muffle furnace at 900 °C for 4 h. The body color of final product was appeared as white polycrystalline powder. The phase transparency was checked by XRD. The XRD pattern was recorded on a Miniflex II powder diffractometer with Cu-K α radiation from a rotating anode of Wavelength is 1.5405 Å. PL spectra were recorded with a Hitachi F-7000 fluorescence spectrophotometer and PL emission and PL excitation spectra were recorded.

 $Table-1\\ Balanced molar ratio of precursors and weights of the\\ ingredients for YBaB_9O_{16}\text{:}Ce^{3^+}$

YBaB ₉ O ₁₆ :Ce ³⁺	Ba(NO ₃) ₂	Y ₂ O ₃	Ce(NO ₃) ₃ .6H ₂ O	H ₃ BO ₃
Molar ratio	1	0.99	0.01	9
Weights (gms)	1.30	0.55	0.021	2.78

Results and Discussion

XRD investigation: Figure-1 show the XRD pattern of YBaB₉O₁₆:Ce³⁺ was successfully synthesized by recrystallization method. The formation of the crystalline phase was confirmed by XRD and XRD patterns for sample agree well with ICCD card No. 00-055-0792. According to the standard X-ray diffraction pattern ICCD card No. 00-055-0792, the YBaB₉O₁₆:Ce³⁺ lattice possesses Monoclinic structure with a

space group P2/ m (10) with lattice parameter a = 15.5720 Å, b = 3.892 Å and c = 6.7427 Å.

PL Excitation and Emission properties: Figure-2. Show the emission and excitation spectra of YBaB₉O₁₆:Ce³⁺ exhibits blue emission at 415 nm under UV excitation which is excited by 360 nm. The excitation spectrum for 415 nm emission mainly consists of a strong wide band peaking at 360 nm. The emission

spectrum also consists of a strong broad peak at 415 nm which is excited by 360 nm under UV excitation which corresponds to 5d excited state to the $^2F_{5/2}$ state and the $^2F_{7/2}$ ground state. It is accepted that the emission of Ce^{3+} can be accredited to transitions from the lowest 5d excited state to the $^2F_{5/2}$ state and the $^2F_{7/2}$ ground state, so that two different emission spectra observe⁸.

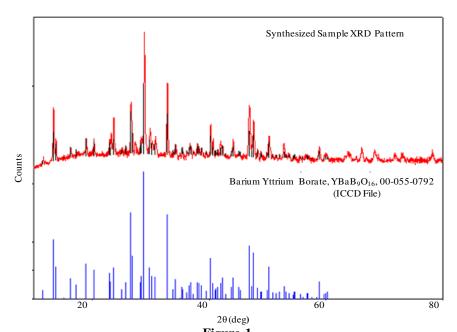
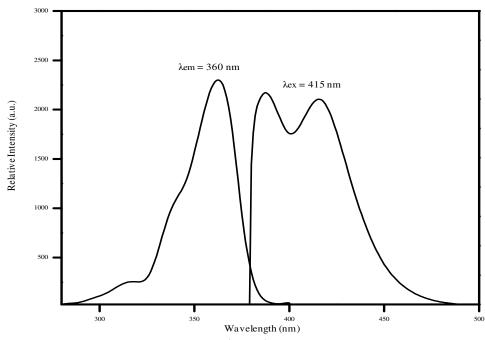
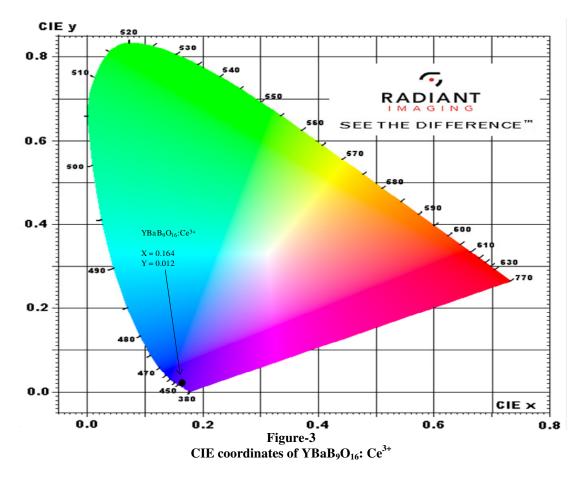




Figure-1 XRD pattern of YBaB $_9O_{16}$:Ce $^{3+}$ and matched with the ICCD card No. 00-055-0792

 $Figure - 2 \\ Excitation and Emission Spectra of YBaB_9O_{16}: Ce^{3+} \\ monitored at 415 \\ nm \\ and 360 \\ nm \\ respectively$

CIE Co-ordinates: Figure-3 Represent CIE coordinates of YBaB₉O₁₆: Ce³⁺ was measured as (x=0.164, y=0.012). The location of coordinate has been marked in Figure-3 with a red circle. The CIE coordinate of YBaB₉O₁₆: Ce³⁺ is in near blue region.

Conclusion

The blue emitting phosphor Ce^{3+} doped $YBaB_9O_{16}$ phosphor was successfully synthesized by re-crystallization method. The luminescence properties in term of excitation and emission spectra $YBaB_9O_{16}$ properties show emission in blue region. The color chromaticity coordinate for $YBaB_9O_{16}$: Ce^{3+} was found to be x=0.164, y=0.012.

References

- 1. Saubat S., Vlasse M. and C Fouassier (1980). Synthesis and structural study of the new rare earth magnesium borates $LnMgB_5O_{10}$ (Ln = La, Er). *J Solid State Chem.*, 34, 271-277.
- **2.** Fu W.T., Fouassier C. and Hagenmuller P. (1987). Luminescence properties of Ce³⁺ and Tb³⁺ in a new family of boron-rich alkaline earth rare earth borates. *Mater Res Bull.*, 22, 389-397.

- Sawala N.S., Koparkar K.A., Bajaj N.S. and Omanwar S.K. (2016). Near-infrared downconversion in Y_(1-x)Yb_xVO₄ for sensitization of c-Si solar cells. *Optik Int. J. Light Electron Opt.*, 127, 4375-4378
- **4.** Nimishe P. and Dhoble S. (2011). Synthesis and photoluminescence characterization of Ce³⁺ and Dy³⁺ activated ALa(WO4)2(A = Na and Li) novel phosphors. *S. Bull. Mater. Sci.*, 34, 1119–1125
- **5.** Sonekar RP, Omanwar SK, Moharil S., Muthal P., Dhopte S. and Kondawar V. (2009). Luminescence in LaBaB₉O₁₆ prepared by combustion synthesis. *J. Lumin.*, 129, 624–628
- **6.** Yanga Z., Lina J., Sua M. and Youb L. (2000). Structural and luminescent properties of LnBaB₉O₁₆:Eu³⁺. *Mater. Res. Bull.*, 35, 2173–2182.
- 7. Sawala N.S., Bajaj N.S. and Omanwar S.K. (2016). Near-infrared quantum cutting in Yb³⁺ ion doped strontium vanadate. *Infrared Phys. Techn.*, 76, 271-275.
- **8.** Wu Yang, Q. Zhao, Z. Que, Z. Wang, M. Wang, X. (2014). Synthesis, crystal structure and luminescence properties of a Y₄Si₂O₇N₂:Ce³⁺ phosphor for near-UV white LEDs. *Y. J. Mater. Chem.*, 2, 4967