International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Cyclic Voltammetric Investigation of Iron In Ore at 1,10-Phenanthroline Modified Carbon Paste Electroactive Electrode

Author Affiliations

  • 1Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal
  • 2Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal
  • 3Département de chimie, faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
  • 4Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal
  • 5Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal
  • 6Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal

Res.J.chem.sci., Volume 6, Issue (10), Pages 41-47, October,18 (2016)


An electrochemical method based on cyclic voltammetry (CV) and employing a 1,10-phenanthroline (phen) modified carbon paste electroactive electrode (OMCPEE) has been proposed for the determinationof iron on solid substratum. The OMCPEE was calibrated with standard iron sulfate FeSO4 in 2 M HCl as a supporting electrolyte. Under optimized conditions, the proposed method has shown acceptable analytical performances. Two couples of well-defined redox peaks, which are corresponded to the oxidation of iron(II) and ferroin complex are recorded. The scan rate effect suggested thatthe electrode reaction corresponds to anadsorption-controlled process. Using the proposed method, iron was successfully determined in ore samples, suggesting that this method can be applied to the determination of iron in geological matrices.


  1. Alafara A.B., Adekola F.A. and Lawal A.J. (2007)., Investigation of Chemical and Microbial Leaching of Iron ore in Sulphuric acid., J. Appl. Sci. Environ. Manage., 11(1), 39-44.
  2. Wildermuth E., Stark H., Friedrich G., Ebenhöch F.L., Kühborth B., Silver J. and Rituper R. (2000)., Iron compounds., Ullmann
  3. Amyn S.T. and Pei-Yoong K. (2009)., Synthesis, properties, and applications of magnetic iron oxide nanoparticles., Progress in Crystal Growth and Characterization of Materials, 55, 22-45.
  4. Nagajothi A., Kiruthika A., Chitra S. and Parameswari K. (2013)., Fe(III) Complexes with Schiff base Ligands : Synthesis, Characterization, Antimicrobial Studies., Res. J. Chem. Sci., 3(2), 35-43.
  5. Laurent S., Forge D., Port M., Roch A., Robic C., Elst L.V. and Muller R.N. (2008)., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications., Chem. Rev., 108(6), 2064-2110.
  6. AminiMashhadi A., Rastgoo A.R. and Vahdati Khaki J. (2008)., An Investigation on the Reduction of Iron Ore Pellets in Fixed Bed of Domestic Non–Coking Coals., International Journal of ISSI., 5(1), 8-14.
  7. Chang X., Jiang N., Zheng H., He Q., Hu Z., Zhai Y. and Cui Y. (2007)., Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique., Talanta, 77(1), 38-43.
  8. Saracoglu S., Soylak M., KacarPeker D.S., Elci L., Dos Santos W.N.L., Lemos V.A. and Ferreira S.L.C. (2006)., A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry., Analytica Chemica Acta, 575(1), 133-137.
  9. Lunvongsa S., Tsuboi T. and Motomizu S. (2006)., Sequential determination of trace amounts of iron and copper in water samples by flow injection analysis with catalytic spectrophotometric detection., Analytical Sciences, 22(1), 169-172.
  10. Teixeira L.S.G. and Rocha F.R.P. (2007)., A green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solid-phase spectrophotometry., Talanta, 71(4), 1507-1511.
  11. Zamboni C.B., Metairon S., Kovacs L., Macedo D.V. and Rizzutto M.A. (2016)., Determination of Fe in blood using portable X-ray fluorescence spectrometry: an alternative for sports medicine., Journal of Radioanalytical and Nuclear Chemistry, 307(3), 1641-1643.
  12. Liu Y., Dang Z., Wu P., Lu J., Shu X. and Zheng L. (2011)., Influence of ferric iron on the electrochemical behavior of pyrite., Ionics, 17(2) 169-176.
  13. Tao D.P., Richardson P.E., Luttrell G.H. and Yoon R.H. (2003)., Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes, ElectrochemicaActa, 48(24), 3615-3623.
  14. Liu R.,Wolfe A.L., Dzombak D.A., Horwitz C.P., Stewart B.W. and Capo R.C. (2008)., Electrochemical study of hydrothermal and sedimentary pyrite dissolution., Applied Geochemistry, 23(9), 2724-2734.
  15. Bobrowski A., Nowak K. and Zarebski J. (2005)., Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO3− catalytic system., Analytical and Bioanalytical Chemistry, 382(7), 1691-1697.
  16. Almeida C.M.V.B. and Giannetti B.F. (2002)., A new and practical carbon paste electrode for insoluble and ground samples., Electrochemistry Communication, 4, 985-988.
  17. Grygar T., Marken F., Schröder U. and Scholz F. (2002)., Electrochemical Analysis of Solide. A Review., Collect. Czech. Chem. Commun., 67,163-208.
  18. Bauer D. and Gaillochet M.Ph. (1974)., Etude du comportement de la pâte de carbone à compose electroactif incorpore., Electrochimica Acta, 19(10), 597-606.
  19. Švancara I., Vytřas K., Kalcher K., Walcarius A. and Wang J. (2009)., Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis., Electroanalysis, 21(1), 7-28.
  20. Baghbamidi S.E., HadiBeitollahi, Karimi-Maleh H., Soltani-Nejad S., Soltani-Nejad V. and Roodsaz S. (2012)., Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan., Journal of Analytical Methods in Chemistry, Article ID 305872, 8.
  21. Gadhari N.S., Sanghavi B.J. and Srivastava A.K. (2011)., Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk., Analytica Chemica Acta, 703, 31-40.
  22. Vytřas K., Švancara I. and Metelka R. (2009)., Carbon paste electrodes in electroanalytical chemistry., J. Serb. Chem. Soc., 74(10), 1021-1033.
  23. Mersal G.A.M. and Ibrahim M.M. (2013)., Voltammetric Studies of Lead at a New Carbon PasteMicroelectrode Modified with N(2-isopropylphenyl)-2-thioimidazole and its Trace Determination inWater by Square Wave Voltammetry., Int. J. Electrochem. Sci., 8, 5944-5960.
  24. Mojica E.R.E., Santos J.H. and Micor J.R.L. (2007)., Determination of lead using a feather-modified carbon paste electrode by anodic stripping voltammetry., World Applied Sciences Journal, 2(5), 512-518.
  25. Rajawat D.S., Kumar N., Satsangee S.P. (2014)., Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder., Journal of Analytical Science and Technology, 5, 19.
  26. Mojica E.R.E., Vidal J.M., Pelegrina A.B. and Micor J.R.L. (2007)., Voltammetric determination of lead (II) ions at carbon paste electrode modified with banana tissue., Journal of Applied Sciences, 7(9), 1286-1292.
  27. Anguiano D.I., García M.G., Ruíz C., Torres J., Alonso-Lemus I., Alvarez-Contreras L., Verde-Gómez Y. and Bustos E. (2012)., Electrochemical Detection of Iron in a Lixiviant Solution of Polluted Soil Using a Modified Glassy Carbon Electrode., International Journal of Electrochemistry, Article ID 739408, 6.
  28. Mahamane A.A., Guel B. and Fabre P.L. (2015)., Electrochemical behaviour of iron(II) at a Nafion-1,10-phenanthroline-modified carbon paste electrode: assessing the correlation between preconcentration potential, surface morphology and impedance measurements., J. Soc. Ouest-Afr. Chim., 039, 41-56.
  29. Kamel A.H., Moreira F.T.C., Silva T.I. and Sales M.G.F. (2011)., A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements., International Journal of Electrochemistry, Article ID 643683, 10.
  30. Sharara Z.Z., Vittori O. and Durand B. (1984)., Electrochemical Oxidation of Divalent Iron Mixed Oxides Using Carbon Paste Electrodes., ElectrochemicaActa., 29(12) 1689-1693.
  31. Hamilton I.C. and Woods R. (1981)., An Investigation of Surface Oxidation of Pyrite and Pyrrhotite by Linear Potential Sweep Voltammetry., J. Electroanal. Chem., 118, 327-343.
  32. Chen Y.W.D., Santhanam K.S.V. and Bard A.J. (1981)., Solution Redox Couples for Electrochemical Energy Storage: Iron (III)-Iron (II) Complexes with O-Phenanthroline and Related Ligands., J. Electrochem. Soc., 128(7), 1460-1467.
  33. Diédhiou M.B., Diaw M., Koita D., Kane C. and Mar-Diop C.G. (2016)., Étude comparative du comportement électrochimique de l’or et du fer par voltammétrie cyclique sur électrode de pâte de carbone en vue de l’analyse d’un minerai., Afrique Science, 12(4), 36-44.