International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Intermolecular Hydrogen Bonding effect on Excited state properties of 3- and 4-Aminocoumarins: A theoretical study

Author Affiliations

  • 1 Department of Physics, Govt. College (Autonomous), Mandya, 571401, INDIA

Res.J.chem.sci., Volume 5, Issue (12), Pages 74-87, December,18 (2015)

Abstract

Intermolecular hydrogen bonds, including their structure, energy in the ground state (S) and energy change upon electronic first excitation state (S) of 3- and 4-aminocoumarin molecules (nAC, n=3,4) in water are investigated theoretically using density functional theory (DFT) and time dependent DFT (TDDFT) interfaced with the effective fragment potential (EFP)/ polarizable continuum model (PCM) method of salvation. The ground and excited state properties of nAC with five water molecules (nAC-(HO) complex) have been carried out using TDDFT/B3LYP/EFP/PCM/6-31G(d,p) method. Upon photoexcitation of 3AC-(HO) complex, A type (NH-O) hydrogen bond (HB) is weakened, B and C type (C=OH-O and N-HO) HBs are strengthened. In the S state of 4AC-(HO) complex, A and B type HBs are weakned, and C type HB is strengthned. The weakening of B type HBs in 4AC water complex shows the uncommon behavior of aminocoumarin molecules, resolved by NBO analysis.

References

  1. March N.H. and Tosi M.P., Coulomb Liquids, Academic Press, New York (1984)
  2. Biczok L., Brces T. and Linschitz H., Quenching Processes in Hydrogen-Bonded Pairs: Interactions of Excited Fluorenone with Alcohols and Phenols, J. Am. Chem. Soc., 11911071 (1997)
  3. Moog R.S., Burozski N.A., Desai M.M., Good W.R., Silvers C.D., Thomson P.A. and Simon J.D., Solution photophysics of 1- and 3-aminofluorenone: the role of inter- and intramolecular hydrogen bonding in radiationless deactivation, J. Phys. Chem., 95, 8466 1991)
  4. Palit D.K., Zhang T., Kumazaki S. and Yoshihara K., The Role of the Amino Protecting Group during Parahydrogenation of Protected Dehydroamino Acids, J. Phys. Chem. A, 107, 10789 (2003)
  5. Nibbering E.T.J., Fidder H. and Pines E., Ultrafast Chemistry: Using Time-resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics, Annu. Rev. Phys. Chem., 56, 337 (2005)
  6. Demeter A., Barasz L. and Berces T., Influence of Hydrogen Bond Formation on the Photophysics of (2,6-Dimethylphenyl)-2,3-naphthalimide, J. Phys. Chem. A,108, 4357 (2004)
  7. Liu Y., Ding J., Liu R., Shi D. and Sun J., Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments, J. Photochem. Photobiol. A, 201, 203 (2009)
  8. Zhou P., Song P., Liu J., Han K. and He G., Experimental and theoretical study of the rotational reorientation dynamics of 7-aminocoumarin derivatives in polar solvents: hydrogen-bonding effects, Phys. Chem. Chem. Phys., 11, 9440 (2009)
  9. Liu Y., Ding J., Shi D. and Sun J., Time-dependent density functional theory study on electronically excited states of coumarin 102 chromophore in aniline solvent: reconsideration of the electronic excited-state hydrogen-bonding dynamics, J. Phy.s Chem. A, 112, 6244 (2008)
  10. Miao M. and Shi Y., Reconsideration on hydrogen bond strengthening or cleavage of photoexcited coumarin 102 in aqueous solvent: a DFT/TDDFT study, J. Comput. Chem., 32, 3058 (2011)
  11. Liu Y-H. and Li P., Excited-state hydrogen bonding effect on dynamic fluorescence of coumarin 102 chromophore in solution: A time-resolved fluorescence and theoretical study, J. Lumin., 131, 2116 (2011)
  12. Pines E., Pines D., Ma Y-Z. and Fleming G.R., Femtosecond pump-probe measurements of solvation by hydrogen-bonding interactions, Chem. Phys. Chem., 5(9), 1315 (2004)
  13. Nibbering E.T.J., Fidder H. and Pines E., Ultrafast Chemistry: Using Time-resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics, Annu. Rev. Phys. Chem., 56, 337 (2005)
  14. Zhao G-J. and Han K-L., Hydrogen bonding in the electronic excited state, Acc. Chem. Res., 45, 404 (2012) ; Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching, J. Phys. Chem. A, 111, 9218 2007)
  15. Zhao W., Pan L., Bian W. and Wang J., Influence of solvent polarity and hydrogen bonding on the electronic transition of coumarin 120: a TDDFT study, Chem. Phys. Chem., 1593 (2008)
  16. Zhao G-J., Liu J-Y., Zhou L-C. and Han K-L., Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism, J. Phy.s Chem. B, 111, 8940 (2007)
  17. Zhang M., Ren B., Wang Y., Zhao C., A DFT/TDDFT study on the excited-state hydrogen bonding dynamics of 6-aminocoumarin in water solution, Spectrochimica Acta Part A,101, 191 (2013)
  18. Ramegowda M., Change in energy of hydrogen bonds upon excitation of 6-aminocoumarin: TDDFT/EFP1 study, New J. Chem.,37, 2648 (2013) ; Change in Energy of Hydrogen Bonds upon Excitation of Coumarin 1: TDDFT/EFP1 Method, Res. J. Chem. Sci., 3(7), 1 2013); A TDDFT/EFP1 study on hydrogen bonding dynamics of coumarin 151 in water, Spectrochimica Acta Part A, 137, 99 (2015)
  19. Zhao G-J. and Han K-L., Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening, Chem.Phys.Chem., 1842 2008); Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study, J. Phys. Chem. A, 111, 2469, 2007)
  20. Zhao G-J. and Han K-L., Hydrogen Bonding and Transfer in the Excited State, John Wiley & Sons Ltd2011)
  21. Liu Y.H. and Lan S.C,Questionable Excited-State H-Atoms Transfer Mechanism for 7-Hydroxyquinoline (NH Cluster, Commun. Comput. Chem., 1 (2013)
  22. Li G.Y., Li Y.H., Zhang H. and Cui G.H,Time-Dependent Density Functional Theory Study on a Fluorescent Chemosensor Based on C–H•••F Hydrogen-Bond Interaction, Commun. Comput. Chem.,, 88 (2013)
  23. Morimoito A., Yatsuhashi T., Shimada T., Biczok L., Tryk D.A. and Inoue H., Radiationless deactivation of an intramolecular charge transfer excited state through hydrogen bonding: Effect of molecular structure and hard-soft anionic character in the excited state, J. Phys. Chem. A, 105, 10488 (2001)
  24. Biczok L., Berces T. and Linschitz H., Quenching Processes in Hydrogen-Bonded Pairs: Interactions of Excited Fluorenone with Alcohols and Phenols, J. Am. Chem. Soc., 119, 11071 (1997)
  25. Vetokhina V., Kijak M., Wiosna-Salyga G., Thummel R.P., Herbich J. and Waluk J., On the origin of fluorescence quenching of pyridylindoles by hydroxylic solvents, Photochem. Photobiol. Sci., 923 (2010)
  26. Kyrychenko A. and Waluk J., Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study, J. Phys. Chem. A, 110, 11958 (2006)
  27. Waluk J., Hydrogen-Bonding-Induced Phenomena in Bifunctional Heteroazaaromatics, Acc. Chem. Res., 36, 832 (2003)
  28. Krystkowiak E. and Maciejewski A., Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments, Phys. Chem. Chem. Phys., 13, 11317 (2011)
  29. Jones II G., Jackson W.R. and Halpern A.M., Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes, Chem. Phys. Lett., 72, 391 (1980)
  30. Kamlet M.J., Dickinson C. and Taft R.W., Linear solvation energy relationships Solvent effects on some fluorescence probes , Chem. Phys. Lett., 77, 69 (1981)
  31. 3Masilamani V. and Sivaram B.M., Solvent effects on the spectral and gain characteristics of a DAMC dye laser, J. Lumin., 27, 147 (1982)
  32. Arbeloa T.L., Arbeloa F.L., Tapia M.J. and Arbeloa I.L., Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives, J. Phys. Chem., 97, 4704 (1993)
  33. Arbeloa T.L., Arbeloa F.L., Tapia Estevez M.J. and Arbeloa I.L., Binary solvent effects on the absorption and emission of 7-aminocoumarins, J. Lumin., 59, 369 (1994)
  34. Krystkowiak E., Dobek K. and Maciejewski A., Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide: Role of hydrogen bonds in deactivation of S-4-aminophthalimide, J. Photochem. Photobiol. A,184, 250 (2006)
  35. Matsubayashi K.and Kubo Y., Control of Photophysical Properties and Photoreactions of Aromatic Imides by Use of Intermolecular Hydrogen Bonding, J. Org. Chem.,73, 4915 (2008)
  36. Samant V., Singh A.K., Ramakrishna G., Ghosh H.N., Ghanty T.K. and Palit D.K., Ultrafast Intermolecular Hydrogen Bond Dynamics in the Excited State of Fluorenone, J. Phys. Chem. A, 109, 8693 (2005)
  37. Munoz M.A., Galan M., Gomez L., Carmona C., Guardado P. and Balon M., The pyrrole ring as hydrogen-bonding -donor base: an experimental and theoretical study of the interactions of N-methylpyrrole with alcohols, J.Chem. Phys., 290, 69 (2003)
  38. Carmona C., Balon M., Galan M., Guardado P. and Munoz M.A., Dynamic Study of Excited State Hydrogenbonded Complexes of Harmane in Cyclohexane–Toluene Mixtures, Photochem. Photobiol., 76, 239 (2002)
  39. Carmona C., Balon M., Galan M., Guardado P. and Munoz M.A., Kinetic Study of Hydrogen Bonded Exciplex Formation of N-methyl Harmane, J. Phys. Chem. A, 105, 10334 (2001)
  40. Day P.N., Jensen J.H., Gordon M.S., Webb S.P., Stevens W.J., Krauss M., Garmer D., Basch H. and Cohen D., An effective fragment method for modeling solvent effects in quantum mechanical calculations, J. Chem. Phys. 105, 1968 (1996)
  41. Gordon M.S., Freitag M.A., Bandyopadhyay P., Jensen J.H., Kairys V. and Stevens W.J., The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry, J. Phys. Chem. A,105, 293 (2001)
  42. Adamovic I., Freitag M.A. and Gordon M.S., Density functional theory based effective fragment potential method, J. Chem. Phys., 118, 6725 (2003)
  43. Jensen J.H. and Gordon M.S., An Approximate Formula for the Intermolecular Pauli Repulsion Between Closed Shell Molecules. II. Application to the Effective Fragment Potential Method, J. Chem. Phys.,108, 4772 1998)
  44. Arora P., Slipchenko L.V., Webb S.P., DeFusco A. and Gordon M.S., Diffusion of atomic oxygen on the Si(100) surface, J. Phys. Chem. A,114, 6742 (2010)
  45. Minizawa N., De Silva N., Zahariev F. and Gordon M.S., Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: Application to excited-state molecular dynamics simulations, J. Chem. Phys., 134, 54111 (2011)
  46. Yoo S., Zahariev F., Sok S. and Gordon M.S., Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach, J. Chem. Phys., 129, 144112 (2008)
  47. Parmer S. and Kumar R., 6H-Indeno[2,1-g]quinolines, J. Med. Chem.,11, 635 (1968)
  48. Rohini K. and Srikumar P., Therapeutic Role of Coumarins and Coumarin-Related Compounds, Thermodynamics & Catalysis, 5(2), 1000130 (1981)
  49. Tianzhi Y., Yuling Z. and Duowang F., Synthesis, crystal structure and photoluminescence of 3-(1-benzotriazole)-4-methyl-coumarin, J. Mol. Struct., 791, 18 (2006)
  50. Yu T.Z., Zhao Y.L., Ding X.S., Fan D.W., Qian L. and Dong W.K., Synthesis, crystal structure and photoluminescent behaviors of 3-(1H-benzotriazol-1-yl)-4-methyl-benzo[7,8]coumarin, J. Photochem. Photobiol. , 188, 245 (2007)
  51. Ray D. and Bharadwaj P.K., A Coumarin-Derived Fluorescence Probe Selective for Magnesium, Inorg. Chem., 2252 (2008)
  52. Trenor S.R., Shultz A.R., Love B.J. and Long T.E., Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds, Chem. Rev.104, 3059 (2004)
  53. Tianzhi Y., Peng Z., Yuling Z., Hui Z., Jing M., and Duowang F., Synthesis and photoluminescent properties of two novel tripodal compounds containing coumarin moieties, Spectrochim. Acta Part A, 73, 168 (2009)
  54. Ruikui C., Xichuan Y., Haining T. and Licheng S., J. Photochem. Photobiol. A, 189, 295 (2007)
  55. Singer K.D., Lalama S.L., Sohn J.E. and Small R.D., Non-linear optical properties of Organic molecules Crystals, Academic Press, Orlo, FL (1987) ch. II-8.
  56. Nicoud J.F. and Twieg R.J., Non-linear optical properties of Organic molecules Crystals, Academic, Orlo, FL2002) ch. II-3.
  57. Moerner W.E. and Silence S.M., Polymeric Photorefractive Materials, Chem. Rev., 94, 127-155 1994)
  58. O’Kennedy R., Coumarins Biology, Applications Mode of Action, Wiley, Chichester (1997)
  59. Yu T.Z., Zhang P., Zhao Y.L., Zhang H., Meng J., Fan D.W. and Dong W.K., Photoluminiscence and electroluminescence of a tripodal compound containing 7-diethyl amino-coumarin moiety, J. Phys. D: Appl. Phys., 41, 235406 (2008)
  60. Tianzhi Y., Peng Z., Yuling Z., Hui Z., Jing M. and Duowang F., Synthesis, characterization and high-efficiency blue electroluminescence based on coumarin derivatives of 7-diethylamino-coumarin-3-carboxamide, Org. Electron.10, 653 (2009)
  61. Asish R., Arunima M. and Raghunath S., Synthesis of biologically potent new 3-(heteroaryl)aminocoumarin derivatives via Buchwald–Hartwig C–N coupling, Tetrahedron Lett.51, 1099 (2010)
  62. Amit A., Jamie K., Chad C., Natasha D. and Graham J., Hydrolysis-free synthesis of 3-aminocoumarins, Tetrahedron Lett., 48, 5077 (2007)
  63. Yadav L.D.S., Singh S. and Rai V.K., A one-pot [Bmim]OH-mediated synthesis of 3-benzamidocoumarins, Tetrahedron Lett., 50, 2208 (2009)
  64. Di Braccio M., Grossi G., Roma G., Marzano C., Bacccichetti F., Simonato M. and Bordin F., Pyran derivatives: Part XXI. Antiproliferative and cytotoxic properties of novel -substituted 4-aminocoumarins, their benzo-fused derivatives, and some related 2-aminochromones, Farmaco 58, 1083 (2003)
  65. G. Roma, M. Di Braccio, A. Carrieri, G. Grossi, G. Leoncini, M.G. Signorello and A. Carotti, Coumarin, chromone, and 4(3)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: synthesis, biological evaluation, and comparative molecular field analysis, Biorg. Med. Chem., 11, 123 (2003)
  66. Parr R.G. and Yang W., Density-Functional Theory of Atoms, Molecules (New York: Oxford University Press. 1989)
  67. Kim K. and Jordan K.D., Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer, J. Phy. Chem., 98 (40), 10089-10094 (1994)
  68. Stephens P.J., Devlin F.J., Chabalowski C.F. and Frisch M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phy. Chem., 98 (45), 11623-11627 1994)
  69. Stevens W.H., Basch H., Krauss M. and Jasien P., Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, Can. J. Chem., 70, 612-630 (1992)
  70. Cundari T.R. and Stevens W.J., Effective core potential methods for the lanthanides, J. Chem. Phys., 98, 5555-5565 (1993)
  71. Hay P.J. and Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 82, 270-283, (1985)
  72. Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98, 5648 1993); Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38, 3098 (1988)
  73. Lee C., Yang W. and Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev., B37, 785 (1988) Dreuw A. and Gordon M.H., Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, Chem. Rev., 105, 4009-4037 (2005)
  74. Dreuw A. and Gordon M.H., Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, Chem. Rev., 105, 4009-4037 (2005)
  75. Elliott P., Furche F. and Burke K., Excited states from time-dependent density functional Theory, Rev. Comp. Chem. 26, 91-166 (2009)
  76. Hirata S. and Gordon M.H., Time-dependent density functional theory within the Tamm Dancoff approximation, Chem. Phy. Lett., 314, 291-299 (1999)
  77. Runge E. and Gross E.K.U., Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett.,52, 997 1984) 78.Casida M., Recent Advances in Density Functional Methods; Chong D.P., Ed., (World Scientific: Singapore, 1995) , Vol. 1, pp 155-192.
  78. Casida M., Recent Advances in Density Functional Methods; Chong D.P., Ed., (World Scientific: Singapore, 1995), Vol. 1, pp 155-192.
  79. Bauernschmitt R. and Ahlrichs R., Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett., 256, 454 (1996)
  80. Stratmann R.E., Scuseria G.E. and Frisch M.J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 109, 8218 1998)
  81. Furche F. and Ahlrichs R., Time-dependent density functional methods for excited state properties, J. Chem. Phys., 117, 7433 (2002) ; 121, 12772 (2004)
  82. Li H., Pomelli C.S. and Jensen J.H., Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface, Theoret.Chim.Acta,109, 71 (2003)
  83. Li H., Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients, J. Chem. Phys., 131, 184103 (2009)
  84. Wang Y. and Li H., Excited state geometry of photoactive yellow protein chromophore: a combined conductorlike polarizable continuum model and time-dependent density functional study, J. Chem. Phys., 133, 034108 (2010)
  85. Adamovic I., Freitag M.A. and Gordon M.S., Density functional theory based effective fragment potential method, J. Chem. Phys., 118, 6725 (2003)
  86. NBO 6.0. Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J. E., Bohmann J. A., Morales C. M., Landis C. R. and Weinhold F., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, (2013);http://nbo6.chem.wisc.edu
  87. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M. and Montgomery J.A., General atomic and molecular electronic structure system, J. Comput. Chem. 14, 1347-1363 (1993)
  88. Gordon M.S., Schmidt M.W., Advances in electronic structure theory: GAMESS a decade later, Chapter 41, pp 1167-1189, in Theory and Applications of Computational Chemistry, the first forty years, Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E., Editors Elsevier, Amsterdam, 2005)
  89. Nagata T., Fedorov D.G., Sawada T., Kitaura K. and Gordon M.S., A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin, J. Chem. Phys., 134, 034110 2011)
  90. Subba rao R.V., krishnamurthy M. and Dogra S.K., Fluorescence spectra of 3-aminocoumarin and its acid-base behaviour in the excited singlet state, J. Photochem., 34, 55 (1986)
  91. Stamboliyska B.,Janevska V., Shivachev B., Nikolova R.P., Stojkovic G., Mikhova B. and Popovski E.,Experimental and theoretical investigation of the structure and nucleophilic properties of 4-aminocoumarin, ARKIVOC 62 x (2010)