

Research Journal of Chemical Sciences . Vol. 5(1), 71-77, January (2015)

Measurements of Ambient Air Fine and Coarse Particulate Matter in ten South-East Nigerian cities

Ngele S.O^{1*} and Onwu F.K²

¹Department of Industrial Chemistry, Ebonyi State University, P.M.B. 053 Abakaliki, NIGERIA ²Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia State, NIGERIA

Available online at: www.isca.in, www.isca.me

Received 4th January 2015, revised 16th January 2015, accepted 18th January 2015

Abstract

This study monitored fine particulate matter (PM) load with aerodynamic diameter ten micrometer or less (PM₁₀) and two and half micrometer or less (PM_{2.5}) in ten urban centres in South-Eastern Nigeria in the dry and wet seasons from December, 2008 to September, 2009 using photometric laser-based particle counter instrument. The results showed that the seasonal mean varied in the range of 55.81 ± 17.09 to $921.34 \pm 532.60 \ \mu g.m^3$ for the PM₁₀ in the dry season and 14.38 ± 3.01 to 266.06 $\pm 129.79 \ \mu g.m^3$ for the wet season. The seasonal mean of (PM_{2.5}) ranged from 21.69 ± 9.93 to 122.88 ± 33.90 and 3.31 ± 2.36 to $11.44 \pm 4.57 \ \mu g.m^3$ for the dry and wet seasons respectively. Comparatively, the cities' PM₁₀ load in the dry season followed the order: Onitsha > Aba > Umuahia > Owerri > Enugu > Nsukka > Abakaliki > Afikpo > Orlu > Nnewi, while the order for dry season means of PM_{2.5} followed: Onitsha > Aba > Owerri > Umuahia > Abakaliki > Afikpo > Orlu > Nnewi, while the order for dry seasonal mean of PM₁₀ and PM_{2.5} levels in all the cities exceeded the US annual National Ambient Air Quality Standard (NAAQS) of 50 $\mu g.m^3$ and 15 $\mu g.m^3$ respectively. The student t-test statistics revealed significant difference between the dry and wet seasonal means of PM₁₀ and PM_{2.5} (p<0.05) while correlation matrix showed that the PM₁₀ and PM_{2.5} seasonal mean concentrations correlated positively (p<0.05). The study concluded that having 100% of these cities in the dry season for PM₁₀ and PM_{2.5} and 60 % for PM₁₀ in wet season exceeding the recommended annual guideline limit, portends public health risk particularly to people dwelling in the affected cities.

Keywords: Ambient air, environmental pollution, fine, coarse, particulate matter, South-East Nigeria.

Introduction

The recent upsurge in the quantum of research in the air environment may stem from increased awareness on the negative consequences of air pollution on public health, biotic and material component of the environment. For instance, air pollution particularly particulate matter has been implicated in the aggravation of respiratory and cardiovascular diseases¹⁻⁵, retardation in growth and yield of plants⁶, reduction in visibility^{7,8} and deterioration of the physical environment⁹.

Suspended particulate matter consists of finely divided solids or liquids such as smoke, dust, fumes, mist, smog and sprays¹ Particulate matter in the ambient air usually consists of discrete particles ranging in size from molecular clusters of 0.005 µm to coarse particles in the order of 100 μ m^{10,11}. Processes that emit particulate matter into the atmosphere include: volcanic eruptions, geochemical sources, windblown dust, soil resuspension, spray from marine sources, power plant emissions, agricultural and industrial emissions and vehicular emissions^{10,12,13}. The south-east Nigerian air environment is characterized by observable high levels of suspended particulate matter in the dry season due to dust//biomass burning, soil resuspension, wind-blown dust and Sahara dust transport that are prevalent in the dry season. Wet season on the other hand records low PM due to clean up from the rain. For the protection of public health and the sensitive subgroups, measurements of PM_{10} (coarse particulate) and $PM_{2.5}$ (fine particulate) are now among the criteria pollutants that are mandatorily monitored in United States and Europe¹⁴. Recent research findings have shown that the fine particulate ($PM_{2.5}$) portends more health risk as it penetrates deeper into the lower lung region^{1,3,15}. In Nigeria as in many other developing counties, real time continuous monitoring network stations are not yet in place. PM monitoring is still rudimentary, discontinuous, limited in scope and duration. Available data of random sampling by researchers and consultants in some urban centres in Nigeria showed that while some cities such as Lagos, Kano, PortHarcourt, Calabar have PM load above the WHO recommended limit¹⁶⁻²⁰, other cities such as Abakaliki and Ogoja have PM levels within the limit^{21,22}. This study aims at providing baseline data on fine and coarse PM levels in ten major cities in South-Eastern Nigeria.

Materials and Methods

The study Area: The study covered two major cities each in Anambra, Enugu, Ebonyi, Abia and Imo States (all in South-East Nigeria). The area is located within latitudes $(4^{\circ}-6.5^{\circ})$ N and longitudes $(5^{\circ}-9^{\circ})$ E. The area has an approximate population of 16,382,029 according to the 2006 census figure. The climatic condition is tropical, characterized by wet and dry seasons. The wet season sets in between April and October while the dry season is usually between November and March²³.

International Science Congress Association

	Table-1	
Sampling Location,	Name and GP	S Coordinates

S. No	City	Site Name	Coordinates
1	Aba	Osisioma junction	$\begin{array}{c} \text{N05}^{0} \ 07.05^{1} \\ \text{E007}^{0} \ 19.81^{1} \end{array}$
2	Umuahia	Gate by Warri Street	$\begin{array}{c} N05^{0} \ 32.06^{1} \\ E007^{0} \ 29.65^{1} \end{array}$
3	Nnewi	Izuchukwu junction	$\frac{N06^{0} \ 01.10^{1}}{E006^{0} \ 55.09^{1}}$
4	Onitsha	Upper Iweka	$\begin{array}{c} \text{N06}^{0} \ 08.04^{1} \\ \text{E006}^{0} \ 47.48^{1} \end{array}$
5	Abakaliki	Akanu Ibiam Roundabout	$\begin{array}{c} \text{N06}^{0} \ 18.58^{1} \\ \text{E008}^{0} \ 05.41^{1} \end{array}$
6	Afikpo	Eke Market	$\begin{array}{c} \text{N05}^{0} \ 52.96^{1} \\ \text{E007}^{0} \ 56.18^{1} \end{array}$
7	Enugu	Chris Chemist/Ogbete market Junction	$\begin{array}{c} N06^{0} \ 26.32^{1} \\ E007^{0} \ 29.24^{1} \end{array}$
8	Nsukka	Peace Mass Park, Nsukka	$\frac{N06^{0} 50.92^{1}}{E007^{0} 23.90^{1}}$
9	Orlu	Owerri Road by International Market junction	$\begin{array}{c} N05^{0} \ 47.33^{1} \\ E007^{0} \ 01.90^{1} \end{array}$
10	Owerri	Govt House by Modotel Junction	N05 ⁰ 30.54 ¹ E007 ⁰ 02.18 ¹

Sampling site selection: In each of the States, two major cities were selected for study. The cities studied were Abakaliki and Afikpo (Ebonyi State), Enugu and Nsukka (Enugu State), Onitsha and Nnewi (Anambra State), Owerri and Orlu (Imo State), Umuahia and Aba (Abia State). In each of the cities, a site was chosen in the 'heart' of the city based on visible human activities, high population density and traffic volume. The coordinates of each site was measured with Garmin global position system, model etrex H (Taiwan).

Monitoring protocol: The suspended particulate matter (SPM) $(PM_{10} \text{ and } PM_{2.5})$ mass concentrations in the ambient air of the monitored sites was determined by means of a digital read out electronic instrument, Aerocet Model 531-9800 Rev. C (Metone Inc. U.S.A.). The instrument has in-built particle count data for eight different particle size ranges including total suspended particulate (TSP), PM₁₀, PM_{2.5} and proprietary algorithm to derive the mass concentration for particulate sampled. The sampler was held at a height of 2m above ground level, the human breathing zone¹² and the ambient air PM concentration reading recorded as displayed on the instrument's screen. Sampling time for each parameter was two minutes (that is time taken from switch on of parameter nub to display of reading on the screen). The frequency of the monitoring was such that a site was monitored one day in a week for twelve hours (6.00am-6.00pm) at an interval of thirty minutes for four months (16 weeks) in the dry season, December, 2008 to March, 2009 and four months in the wet season, June-September, 2009. The hourly mean level for the twelve hours per day per week of each parameter was averaged and the mean for the 16 weeks computed to obtain the seasonal mean for the parameters using statistical package for social science (SPSS) software, version 17.

Results and Discussion

The results of the seasonal variations of the mean PM_{10} and $PM_{2.5}$ are presented in table-2 and 3 and their relationships shown in figures-1A, B, C and 2A, B and C.

The highest dry and wet seasonal mean PM₁₀ concentrations of 921.34±532.60 and 266.06±129.79 µg.m⁻³ were recorded in Onitsha Urban while the minimum levels of 84.38±16.03 and 14.38±3.10 µg.m⁻³ were obtained in Nnewi and Orlu respectively (table-2). The dry seasonal mean in this study is above the annual mean of 123.6 µg.m⁻³ obtained in a similar study in Nigerian cities²⁴. Across the cities, the seasonal mean varied variously with the relatively more urbanized cities of Onitsha, Aba, Umuahia, Owerri and Enugu taking the lead in PM level while Orlu, Afikpo and Nnewi which are relatively less urbanized ranking lower in their PM load (figure-1A). The trend of the PM₁₀ concentrations in the dry and wet seasons were depicted in Figs.1B and C respectively. The PM₁₀ levels were relatively higher in the first ten weeks of the study in the dry season and peaking within the fourth to sixth week then dipping as the dry season progressed (figure-1B). The peaking within the fourth to sixth week corresponds to the peaking of harmattan in the South -Eastern States of Nigeria when the trans-boundary transportation of PM from the Sahara desert is mostly aided by North-East trade wind that is prevalent within this period. Other researchers have observed the elevation in PM10 and PM2.5 mass concentrations in the Mediterranean region as result of Sahara desert episodic dust event and its subsequent trans-boundary transportation across the Mediterranean²⁵⁻²⁷. In figure-1C, the PM_{10} levels were higher in the first few weeks of commencement of the measurement and then decreases afterward. This again is expected as the ambient air PM level decreases with the progression of the rainy season due to wet precipitation (atmosphere clean-up by rain).

The seasonal mean PM_{10} levels in all the cities (except Orlu wet season) exceeded the WHO annual average guideline value of 20 µg m⁻³. The range of PM_{10} levels in this study was above the values reported for various European Countries²⁸ but within the 24-hours mean levels of 149-340 µg.m⁻³ reported for cities in Pakistan²⁹ and 170-260 µg.m⁻³ reported in Calabar, Cross River State, Nigeria³⁰.

Onitsha Urban had the highest mean dry seasonal $PM_{2.5}$ value of 122.88 ± 33.39 µg.m⁻³ while the highest wet seasonal value of 11.44 ± 4.57 µg.m⁻³ was obtained in Aba. The least dry and wet mean $PM_{2.5}$ values of 21.69 ± 9.93 and 3.31 ± 2.36 µg.m⁻³ were obtained in Nsukka and Owerri urban respectively (table-3). The seasonal mean variation of $PM_{2.5}$ followed the pattern of the PM_{10} with relatively less urbanized cities having least in PM levels as against higher values for relatively more urbanized cities (figure-1A).

	Table-2																			
	Dry and Wet seasonal mean levels of PM ₁₀ (μg.m ⁻³) in the cities monitored																			
WK	At	ba	Umu	ahia	Nn	ewi	Oni	tsha	Abak	aliki	Afi	kpo	Enugu		Nsukka		O	rlu	Ow	erri
W K	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W
1	604	106	376	120	106	44	1320	427	107	82	128	60	247	46	170	60	105	12	110	120
2	678	124	481	134	122	51	1460	408	100	73	100	64	253	48	200	71	100	10	121	100
3	727	117	810	106	87	24	1600	419	148	76	136	61	270	48	206	80	120	14	136	102
4	711	121	840	100	98	30	1433	400	155	68	140	58	308	60	220	68	102	14	160	102
5	901	107	889	90	96	31	1283	383	158	48	142	54	309	51	200	62	120	18	158	101
6	975	106	720	60	89	34	1109	375	147	41	152	50	233	40	210	65	90	15	171	90
7	811	120	911	80	96	29	1175	364	123	64	102	52	207	42	286	60	88	12	280	83
8	846	100	387	60	78	30	1086	208	126	60	96	48	362	30	301	40	86	18	310	86
9	684	90	312	70	73	28	1101	276	128	58	95	47	172	29	254	36	86	14	323	82
10	637	83	354	75	78	25	896	235	120	45	90	42	162	30	100	32	80	15	286	76
11	580	83	287	66	76	24	982	211	115	41	84	38	108	20	100	30	80	12	260	85
12	564	87	248	60	80	28	960	136	106	40	76	29	107	18	120	42	60	20	277	75
13	498	79	172	51	70	26	96	121	112	39	72	32	152	20	190	28	70	18	240	98
14	367	75	180	85	74	25	88	101	82	38	70	24	90	18	180	27	68	16	236	90
15	470	89	243	72	63	23	81	98	120	36	56	25	75	16	110	23	80	10	285	85
16	335	66	271	53	64	21	81	95	117	29	52	21	96	18	146	21	86	12	244	78
\overline{x}	649.25	97.06	467.56	80.13	84.38	29.56	921.34	266.06	122.75	52.38	99.44	44.06	196.94	33.38	187.06	46.56	88.81	14.38	224.81	90.81
S	181.47	18.04	269.08	24.32	16.03	7.87	532.60	129.79	20.78	16.36	31.67	14.29	89.77	14.46	61.75	19.51	17.09	3.01	70.90	12.13
3	101.47	10.04	209.08	24.32	10.05	1.01	552.00	129.19	20.78	10.50	51.07	14.29	07.11	14.40	01.75	19.31	17.09	5.01	70.90	Ŀ

Table-2	
onal mean levels of PM.	$(ug m^{-3})$ in the

Table-3

Dry and Wet seasonal	mean levels	s of PM _{2.5} (µg.m ⁻³) in t	the cities mo	onitored

Wk	Al	ba	Umu	ahia	Nne	wi	Onits	sha	Abak	aliki	Afikpo Enugu		ugu Nsu		kka	Orlu		Owerri		
VV K	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W	D	W
1	100	12	80	14	40	09	105	18	47	20	20	16	15	06	14	06	15	09	70	04
2	106	15	77	12	55	08	129	14	54	16	40	16	18	10	16	10	20	06	76	08
3	80	12	78	10	68	06	153	12	56	16	41	18	21	10	25	12	25	06	96	06
4	140	14	106	10	60	04	165	12	51	14	43	15	28	10	23	06	22	06	104	06
5	145	21	140	08	68	08	136	10	60	16	60	14	55	06	36	06	30	04	102	06
6	94	12	118	08	56	06	145	10	60	06	58	13	56	06	40	10	32	05	100	06
7	86	18	80	12	60	06	124	10	72	06	56	10	29	04	30	12	36	02	120	03
8	80	16	77	06	40	06	141	12	71	06	64	10	26	04	32	08	32	03	101	03
9	76	12	62	08	37	03	188	10	66	06	52	10	22	04	30	06	30	02	90	02
10	78	10	55	06	36	02	149	07	35	06	51	06	20	06	20	08	28	10	82	01
11	70	08	49	06	30	02	100	06	31	04	48	05	18	03	23	06	21	06	85	01
12	71	08	46	06	26	02	97	06	30	04	45	04	18	03	17	02	28	03	83	01
13	72	06	45	04	26	02	96	04	33	06	30	01	19	04	15	03	40	01	76	02
14	65	06	50	04	29	02	89	10	36	04	25	01	16	02	10	04	27	02	60	01
15	68	08	48	06	26	01	71	04	23	02	20	01	17	02	06	01	30	01	68	01
16	69	05	42	09	27	02	78	04	41	02	15	02	20	01	10	01	35	01	42	02
\overline{x}	87.50	11.44	72.06	8.06	42.75	4.31	122.88	9.31	47.88	8.38	41.75	8.88	24.88	5.06	21.69	6.31	28.19	4.19	84.69	3.31
S	24.48	4.57	28.74	2.93	15.77	2.65	33.39	3.94	15.60	5.85	15.54	6.05	12.62	2.89	9.93	3.55	6.47	2.81	19.43	2.36

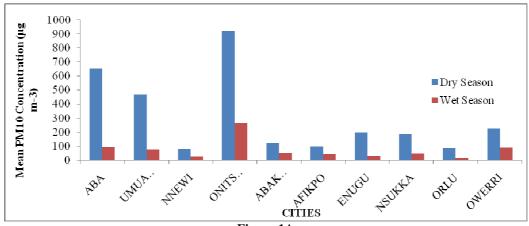


Figure-1A

Variations of PM₁₀ concentrations in Ambient Air between the dry and wet seasons across cities in south- east Nigeria

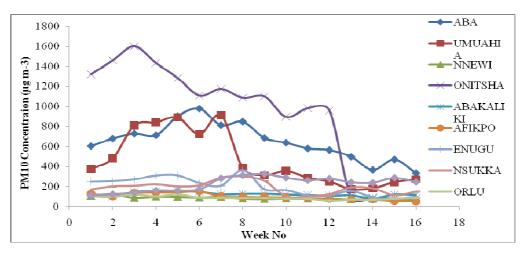
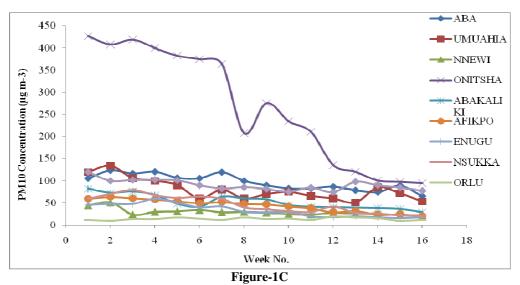
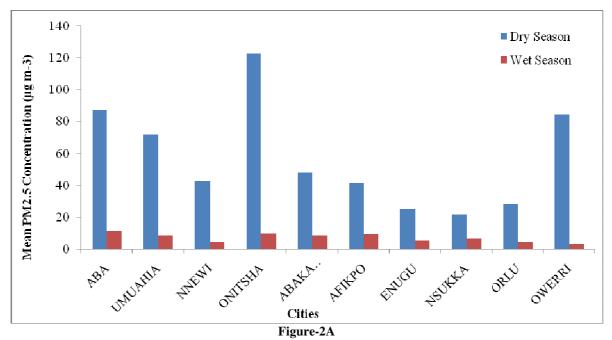
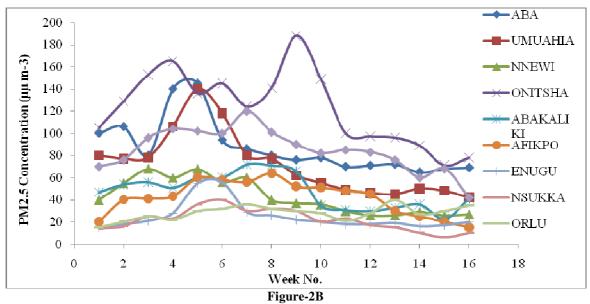



Figure-1B

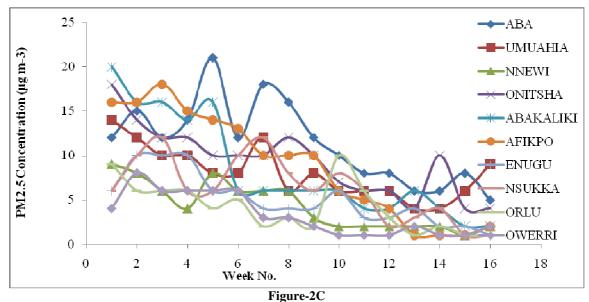
Comparison of Dry Season PM_{10} concentration within the months of Dec. 2008 to March 2009


Comparison of Wet Season PM₁₀ concentration within the months of June –September, 2009

Research Journal of Chemical Sciences	ISSN 2231-606X
Vol. 5(1), 71-77, January (2015)	Res. J. Chem. Sci.


The PM_{2.5} concentrations trend followed the seasonal pattern exhibiting normal curve shape of gradual increase at the beginning of dry season, peaking at the middle and deceases afterwards (figure-2B) while the wet season pattern showed initial higher values and dipping afterwards (figure-2C). The PM_{2.5} concentrations recorded in this study is within the time weighed average minimum and maximum values of 10-340 μ g.m⁻³ by Shendell and Naeher¹¹ in a monitoring of three sites

in the summer in urban Guatemala.


All the cities studied had their wet season mean concentration within the USEPA recommended annual average limit of 15 μ g.m⁻³ for PM_{2.5} but the dry season mean levels exceeded this limit. The dry and wet seasonal levels of PM₁₀ correlated significantly with PM_{2.5} (P< 0.05) in all the cities monitored while the student t-test showed significant difference between the dry and wet seasonal mean of PM₁₀ and PM_{2.5}.

Variations of PM_{2.5} concentrations in Ambient Air between the dry and wet seasons across cities in south-east Nigeria

Comparison of Dry Season PM_{2.5} concentration within the months of Dec. 2008 to March 2009

Comparison of Wet Season PM_{2.5} concentration within the months of June –September, 2009

Conclusion

This study was conducted to assess the ambient air level of coarse and fine particulate in ten urban cities in South-East Nigeria. It was found that within the period of the study, Onitsha urban relative to other cities studied had the highest ambient air seasonal mean concentrations of both the coarse and fine particulate. In addition, the PM load across the cities varied according to the level of urbanization and season. It can be concluded that all the cities studied had dry seasonal mean PM₁₀ and PM_{2.5} load that were above the guideline limit and this calls for concern in view of the human health risk associated with particulate matter pollution.

References

- 1. Philip R.S and Graham J.J., Fine Particulate Matter National Ambient Air Quality Standards: Public Health Impact on Populations in the North Eastern United States, *Environ. Health Persp.*, **113(9)**, 1140-1147 (2005)
- 2. Norris G., Youngpong S.N., Koening J.O., Larson T.V., Sheppard L and Stout J.W., An Association Between Fine Particles and Asthma Emergency Department Visits for Children in Seattle, *Environ. Health Perspect.*, **107**, 489-493(**1999**)
- **3.** Pope A.C., Epidemiology of Fine Particulate Air Pollution and Human Health: Biologic Mechanism and who,s at Risk. Environ. Health Perspect., **108**, 713-723 (2000)
- 4. Samet J.M., Dominic F., Currieo F.C., Coursac T and Zeagr S., Fine Particulate Air Pollution and Mortality in 29 US Cities 1987-1994, *N. Engl. J. Med.*, **343**, 1742-

1749 (2000)

- Ong S.G, Liu J., Wong C.M., Lam T.H., Tam A.Y., Daniel L and Hedley A.J., Studies on Respiratory Health of Primary School Children in Urban Communities of Hong Kong, *Science Total Environ.*, 106, 121-135 (1991)
- 6. Prajapati S.K and Tripathi B.D., Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulate pollution, *Journal of environmental quality*, **37**, 865-870 (**2008**)
- 7. EPA, Protecting visibility : An EPA report to congress, research triangle park, NC office of air quality and planning standards EPA report no. EPA-450/5-79-008, (1979)
- 8. Kim Y.J., Lee K.W., Kim S and Ham J.S., Fine particulate characteristics and its impact on visibility impairment at two urban sites in Korea; Seoul and Incheon. *Atmospheric environment*, **40**, 5593-5605 (2006)
- **9.** Ferm M., Watt J., O'Hanlon S., Santis F.De and Varotasas C., Deposition measurement of particulate matter in connection with corrosion studies. *Analhem.Bioanal.*, **384**,1320-1330 (**2006**)
- Sodhi G.S., Fundamental Concepts of Environmental Chemistry 2nd Edition, Narosa Publishing House, New Deihi, 56-65, (2005)
- **11.** Shendell D.G and Naeher L.P., A pilot study to assess ground level ambient air concentration of fine particles and carbon monoxide in urban Guatamala, *Environment International*, **28**,375-382 (**2002**)
- 12. European Communities Commission, EC (2005),

International Science Congress Association

ISSN 2231-606X *Res. J. Chem. Sci.*

Proposal of Council on Ambient Air Quality and Cleaner Air for Europe, 2005/0183 (COD), Brussels, 21st Sept, (**2005**)

- Gomez D.R., Reich S.L., Dawidowski L.E and Vazquez C., A Combined Analysis to Identify Airborne PM₁₀ Sources, *J. Environ. Monit.*, 7, 52-59 (2005)
- USEPA DRAFT (2005), Fine particulate staff paper fact sheet – January 2005 http:///www.epa.gov/ airlinks/pdfs/pmstaff2fact pdf accessed online on 06-20-(2013)
- **15.** Speizer F.E and Heath C.W., Particulate Air-Pollution as a Predictor of Mortality in a Prospective-Study of Us Adults, *American Journal of Respiratory and Critical Care Medicine*, **151**, 669-674 (**1995**)
- **16.** Olukayode T., Study on Air Pollution in Lagos, Nigeria, Lagos Metropolis Area, Transport Authority (**2005**)
- Akeredolu F.P., Atmospheric Environment Problems in Nigeria: An Overview, Atmos. Environ., 23(4), 7-10 (1989)
- **18.** Koku C.A and Osuntogun B.A., Environmental impacts of road transportation in South, Western states of Nigeria, *Journal of Applied Sciences*, **7**(**16**), 2536-2550 (**2007**)
- **19.** Ikamaise V., Obioh I.B., Ofoezie I.E and Akeredolu F.P., Monitoring of Total Suspended Air Particulate in the Ambient Air of Welding, Car Painting and Battery Charging Workshops in Ile-Ife, Nigeria *Global, J. Pure and App. Sci.*, **7**,743-748 (**2001**)
- 20. Azuka A.D., Envionmental problems in third world cities
 : A Nigerian example, *Chicago Journals*, 26(4), 501-505 (1985)
- 21. Ngele S.O., Fine and total suspended particulate matter in ambient air of Abakaliki, *Journal of Chemical Society* of Nigeria (JCSN), **34(2)**, 24-30 (**2009**)
- 22. Ngele S.O and Okoye P.A.C., Suspended particulate matter levels ambient air of Ogoja urban centre, Cross River state, Nigeria, *Journal of Chemical Society of Nigeria (JCSN)*, 37(1), 20-24 (2012)

- 23. Strachler A.N and Strahler A.H., *Geography and Man's Environment*, John Wiley and Sons, Parts I, II, III and IV, (1977)
- 24. Efe S.I. Spatial distribution of particulate air pollution in Nigerian cities: Implication for human health. J. Environmental Health Research, 2(7) retrieved online @www.cieh.org/jehr/jehr3.aspx%3fid on 01-09-13 (2008)
- **25.** Pederzoli A., Mircea M., Finardi S., diSarra A and Zanini G., Quantification of Saharan 622 dust contribution to PM10 concentrations over Italy during 2003-2005, *Atmos. Environ.*, **44**, 4181-4190 (**2010**)
- Remoundaki E., Papayannis A., Kassomenos P., Mantas E., Kokkalis P. and Tsezos M., Influence of Saharan Dust transport events on PM2.5 concentrations and composition over Athens, *Water Air Soil Poll.*, 224, 1373-1379 (2013)
- Marconi M., Sferlazzo D.M., Becagli S., Bommarito C., Calzolai G., Chiari M., di Sarra A., Ghedini, C., Gómez-Amo J.L., Lucarelli F., Meloni D., Monteleone F., Nava S., Pace G., Piacentino S., Rugi F., Severi M., Traversi R. and Udisti R., Saharan dust aerosol over the central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements, *Atmos. Chem. Phys.*, 14, 2039–2054 (2014)
- Report of European Commission Technical Working Groups on Directive 96/62/EC (1997), Ambient Air Pollution by Particulate Matter : Position Paper 8th April, (1997)
- **29.** JICA/PAKEPA Report (2002), Investigation of Air and Water Quality in Lahore, Rawalpindi and Islambad, (2002)
- **30.** Abam F.I and Unachukwu G.O. Vehicular emissions and air quality standards in Nigeria. *Eurojournal*, **34**(4), 550-560 (**2009**)