

Research Journal of Chemical Sciences ______ Vol. **3(5)**, 10-13, May (**2013**)

Ultrasonic Studies and Molecular Interactions of Binary Liquid Mixture of Ethylamine and Benzyl Alcohol at 313.15⁰K

Saxena Chandra Mohan, Saxena Archna and Shukla Naveen Kumar Department of Chemistry, D.B.S. College Govind Nagar Kanpur, UP, INDIA

Available online at: www.isca.in Received 27th April 2013, revised 13th May 2013, accepted 10th June 2013

Abstract

The experimental values of the parameters like - ultrasonic velocity (u), isentropic compressibility (β_s), intermolecular free length (L_f) and viscosity (η) of ethylamine and benzyl alcohol in the pure state as well as mixture over the whole composition range at 313.15^oK. The excess values of available volume (V_a) ,molar volume (V_m) and Nissan,s parameter(d) have been calculated. It is used in so many fields of scientific researches in physics, chemistry, biology, medicines and industry. About molecular packing, molecular motion and various types of interactions and their strength, influenced by the size ,shape and the chemical nature of component molecules are also provided by these parameters.

Keywords: Binary mixture, ethylamine, benzyl alcohol and ultrasonic interferometer.

Introduction

A considerable progress has been made in theoretical understanding of liquid-liquid mixture¹. The thermodynamic study of binary mixture have attracted much attention of scientist and experimental data on a number systems are publication²⁻⁸. available review and from Many investigations⁹⁻¹⁸ have been engaged in the task of collecting more and more data and explaining in terms of the properties of pure liquid. Viscosity, density measurements and the derived properties from these are excellent tools to detect solute- solute and solute-solvent interactions. The present paper deals with the measurement of density, viscosity (η) and excess thermodynamic properties i.e. Molar volume (V_m), isentropic compressibility (β_s), intermolecular free length (L_f) and Nissan parameter (d) have been calculated. This technique using ultrasonic instrument is in the tremendous use in measuring the rate of flow of blood through the human body and getting images of vital organs of the body like kidney, liver, blood vessel. fetus etc.

Material and Methods

Ethylamine and Benzyl alcohol were obtained from E-Merck and BDH. They were purified by the recommended methods. The volume of mixing binary liquid mixtures is given by $V_m = V - (X_1V_1 - X_2V_2)$

Where V_m is molar volume. V_1 and V_2 are molar volume of pure components and X_1 and X_2 are mole fractions of the components (1) one and (2) two. In the present study density, ultrasonic, velocity, molar volume, isentropic compressibility, intermolecular free length, Nissan's parameter and their excess values have been reported.

Results and Discussion

The results are shown in tables 1 to 4. Deviations in the properties computed demonstrated that their exist a molecular interaction between the liquid mixture of unlike molecules. These may be attributed to the change the adhesive and cohesive forces. The experimental values of ultrasonic velocities, densities, molar volumes and their excess values for the system of ethylamine and benzyl alcohol are shown in table - 1 at 313.15^{0} K.

The table–2 shows isentropic compressibility, intermolecular free length and their excess values for the system (ethylamine +benzyl alcohol) at 313.15^oK. Table–3 shows available volume and their excess values for the system (ethylamine +benzyl alcohol) at 313.15^oK. Table – 4 shows the viscosity and their excess values, L_n η^{E} (Logarithm of excess value of viscosity) and Nissan's parameter (d) have been calculated for the system (ethylamine +benzyl alcohol) at 313.15^oK.

Thus the mixture of ethyl amine and benzyl alcohol is a polar – polar system. In case of ethylamine + benzyl alcohol at 313.15⁰K, the excess isentropic compressibility (β_s^{E}) and the intermolecular free length (L_f) are negative shown in (table-2) but the value of Nissan's parameter (d) shown in (table-4) is positive. Thus the π electrons of benzene ring is also supposed to be involved in the specific interaction as shown below

$$C_{2}H_{5}$$

$$CH_{2} - - O - - H - - N - - H$$

$$C_{6}H_{5} H$$
(Ethyl amine + Benzyl alcohol)

The negative values of excess molar volume(Vm^E), excess available volume (Va^E) (table 1 and 3) and excess viscosity (η^E) (table – 4) may be different molecular size attributed to the presence of dispersive forces between the mixing components and suggest the presence of specific intermolecular interactions of the binary mixture, while the positive values

 Vm^E , Va^E and η^E may be due the presence of strong and specific molecular interactions between the unlike molecules of the binary mixture.

Table- 1
Ultrasonic velocities, Densities, Molar volumes and their excess values for the system Ethaylamine + Benzyl alcohol at
313.15 °K

Mole fraction of	Ultrasonic	Density	Molar Volume	Molar Volume	Excess molar	
Ethylamine	Velocity	g/ml	(exp)	(add)	Volume	
(X ₁)	m/sec		ml/mole	ml/mole	ml/mole	
0.0000	1482	1.0295	105.04	105.04	0.00	
0.1025	1481	1.0210	99.57	99.95	-0.38	
0.2008	1480	1.0072	94.78	95.08	-0.30	
0.2992	1479	0.9917	90.00	90.21	-0.21	
0.4006	1474	0.9740	85.07	85.19	-0.12	
0.4986	1467	0.9552	80.29	80.33	-0.04	
0.5991	1457	0.9319	75.49	75.36	+0.15	
0.6992	1450	0.9050	70.75	70.40	+0.35	
0.7992	1443	0.8750	65.97	65.45	+0.52	
0.8986	1434	0.8409	61.19	60.53	+0.66	
1.0000	1417	0.8121	55.51	55.51	0.00	

Table - 2

Isentropic compressibilities, intermolecular free length and their excess values for the system Ethylamine + Benzyl acohol at 313.15⁰K

Mole fraction of ethylamine X ₁	Isentropic compressibility (exp) cm ² /dyne X10 ¹²	Isentropic compressibiliy (add) cm ² /dyneX10 ¹²	Excess isentropic compressibilitycm ² /dyneX1 ¹²	Inter molecular Free length (exp) A ⁰	Inter molecular Free length (add) A ⁰	Excess inter molecular Free Length A ⁰
0.0000	44.22	44.22	0.00	0.4269	0.4269	0.0000
0.1025	44.65	45.96	- 1.31	0.4289	0.4347	- 0.0058
0.2008	45.32	47.65	- 2.33	0.4321	0.4420	- 0.0099
0.2992	46.09	49.32	- 3.23	0.4358	0.4495	- 0.0137
0.4006	47.25	51.12	- 3.87	0.4413	0.4571	- 0.0158
0.4986	48.64	52.74	- 4.10	0.4477	0.4646	- 0.0169
0.5991	50.54	54.45	- 3.91	0.4564	0.4722	- 0.0158
0.6992	52.55	56.17	- 3.62	0.4653	0.4798	- 0.0145
0.7992	54.88	57.88	- 3.00	0.4656	0.4874	- 0.0118
0.8986	57.83	59.58	- 1.75	0.4882	0.4949	- 0.0067
1.0000	61.32	61.32	0.00	0.5027	0.537	0.0000

Table-3					
Available volumes and the	Available volumes and their excess values for the system Ethylamine + Benzyl alcohol at 313.15^{9} K				
Mole fraction of	Available volume	Available volume	Excess available volume ml		
ethyl amine X_1	(exp) ml /mole	(add)ml/mole	/mole		
0.0000	7.74	7.74	0.00		
0.1025	7.40	7.59	- 0.19		
0.2008	7.10	7.45	- 0.35		
0.2992	6.80	7.31	- 0.51		

0.4000	((0	7.16	0.47
0.4006	6.69	/.16	- 0.4 /
0.4986	6.67	7.04	- 0.37
0.5991	6.65	6.90	- 0.25
0.6992	6.63	6.75	- 0.12
0.7992	6.47	6.61	- 0.14
0.8986	6.34	6.47	- 0.13
1.0000	6.34	6.34	0.00

Table-4Viscosity and their excess values, $Ln\eta^E$ and Nissan's parameter (d) for the system Ethylamine + Benzyl alcohol at 313.15°K

010/10 K						
Mole fraction of ethylamine X ₁	Viscosity (exp) Cp	Viscosity (add) Cp	Excess Viscosity Cp	Lnη ^E	'd'	
0.0000	2.017	2.017	0.000	0.000	0.000	
0.1025	1.935	1.875	+0.060	+ .077	+ 0.837	
0.2008	1.786	1.738	+ 0.048	+ 0.110	+ 0.685	
0.2992	1.632	1.603	+ 0.019	+ 0.134	+ 0.639	
0.4006	1.451	1.464	- 0.009	+ 0.135	+ 0.562	
0.4986	1.267	1.328	- 0.061	+ 0.099	+ 0.396	
0.5991	1.073	1.190	- 0.117	+ 0.059	+ 0.245	
0.6992	0.920	1.051	- 0.131	+ 0.022	+ 0.104	
0.7992	0.793	0.914	- 0.121	- 0.011	- 0.069	
0.8986	0.694	0.776	- 0.082	- 0.031	- 0.340	
1.0000	0.637	0.637	0.000	0.000	0.000	

Acknowledgement

Authors are thankful to Dr. A. K. Srivastava, Principal, D.B.S. (P.G.) College Kanpur. Dr. R.K. Khare. Head of the chemistry department and Dr. Sunil Srivastava, Bursar, D.B.S.(P.G.) College, Kanpur for providing lab facility.

References

- 1. Ravindra Prasad, K. and Subramanyam Naidu, P. Ultrasonic study of some ophthalmic solution in aqueous medium, *Indian Journal of pure and applied physics*, **41**, 686-687, (**2003**)
- Ali A.M., Parashar R., Saxena A. and Lakhanpal M.L., Physico chemical properties of liquid mixture, *Indian Journal of Chemistry*, 28, 512–513 (2004)
- **3.** Ramanathan K. and Ravichandran S., Ultrasonic study of ammonium sulphate with ammonium chloride, *Journal of Pure and Applied Ultrasonics*, **26**, 12 (**2004**)
- Rita Mehra, Molecular interactions between acrolein and cinnamaldehide, *Indian Journal of Chemistry*, 44A, 1834 -1837 (2005)
- Yadav S.S. and Anirudh Yadav, Ultrasonic study of bromo alkanes and hydrocarbons, *Journal of Ultrasonics*, 43, 732-735 (2005)

- 6. Venkatesu P. and Kara Rao et al., Excess molar volumes of N-N di methyl formamide + alkane -1 ol, *Journal of Thermochemica Acta*, 443, 62–71 (2006)
- 7. Upadhyaya S. and Singh M., Physico chemical properties of liquid mixture pentanone with alkane, *Journal of Indian Chemical Society*, **83**, 903–907 (**2006**)
- 8. Kondpal N.D. and Sanwal, Ultrasonic study of methanol and cyclohexane, *Indian Journal of Chemistry*, **45A**, 1405-1407 (**2006**)
- **9.** Ceezary M.K. nart, Magdelena klimczak et al., Densities and excess molar volumes of some glycols in 2- methoxy ethanol, *Journal of molecular liquid*, **135**, 192-195 (**2007**)
- **10.** Nithiyannantham S. and Palaniappan L., Molecular Interaction studies on fructose with aqueous amylase solution, *Acta Cinica Indica*, **22**, 392 (**2006**)
- 11. San-Jun peng, Hai-Yun Hou et al., Densities and excess volumes of binary mixtures of N-N dimethyl formamide with aromatic hydrocarbons at different temperature, *Journal of Chemical Thermodynamics*, **39**, 474–482, (**2007**)
- Acharya S., Das B.K. and Mohanty G., Ultrasonic study of binary mixture of acetyl acetone with polar diluents at 303.160K, *Indian Journal of Physics*, 24, (2009)
- 13. C. Shammuga Priya, S.Nithya et .al, *International Journal* of Advanced Science and Technology, 18, 59–73, (2010)

- 14. Kumar S. and P. Jeevanandham, Densities, viscosities, refractive indices of aniline with 2-alkoxy ethanol at 303.15 K, *Journal of Molecular Liquids*, **174**, 34 -41 (**2012**)
- **15.** Jagddish G.Baragi,Seema Maganur et al Excess of molar volumes and refrective indices of binary liquid mixture acetyle acetone with n- decane, *Journal of Molecular Liquid*, **178**, 175-177 (**2013**)
- 16. K.Saravana Kumar and T.R. Kubendrau, Density and Viscosities for the Binary Mixtures of 1, 4-Dioxane and

Benzene or Chlorobenzene at 303.15, 308.15, 313.15 K and a Pressure of 0.1MPa, *Res.J.Chem. Sci.*, **2**(4), 50-56 (2012)

- 17. Vodamalar R., Mani D. and Balakrishanan R., Ultrasonic Study of Binary Liquid Mixtures of Methyl Methacrylate with Alcohols, *Res. J. Chem.Sci.*, 1(9), 79-82 (2011)
- 18. Gangwar Munendra Kumar and Saxena Ashish Kumar, Ultrasonic study of molecular interactions in binary mixtures of isopropylbenzene (Cumene) with Benzene, Toluene and Acetone at 303K, *Res. J. Chem. Sci.*, 3(2), 27-30 (2013)