Short Communication # Spectroscopic study of Inner Transition metal Mn²⁺ ion in CeSO₄Cl Phosphor # Gedam S.C. K.Z.S. Science College Kalmeshwar, Nagpur 441501, INDIA Available online at: www.isca.in Received 18th February 2013, revised 25th February 2013, accepted 16th March 2013 # **Abstract** CeSO₄Cl: Mn phosphor is prepared by wet chemical method. The spectroscopic study and electronic states of Mn^{2+} are derived from excitation spectra for green-emitting CeSO₄Cl: Mn phosphor and is found to give a spectrum consistent with linear symmetry in increasing intensity of Mn^{2+} ion. Mn^{2+} emission at 535 nm was observed in the present host due to ${}^4T_1 \rightarrow {}^6A_1$ transition. The emission spectra shows single peak having sharp shape and strong intensity at 535 nm. It can be used as a green phosphor. **Keywords**: Inorganic material, wet chemical, photoluminescence, lamp phosphor, Transition metal. #### Introduction The luminescence properties of divalent manganese have been studied intensively and are used in many luminescent materials¹. Transition metal ions have an incompletely filled d-shell i.e. their electron configuration is d^{n} (0 < n < 10). The energy levels originating from such a configuration have been calculated by Tanabe and Sugano, taking the mutual interaction between the d-electron as well as the crystal field into account. The example is the d⁵ configuration, of which Mn²⁺, used in many luminescent materials, is a well-known representative. In fact the Mn²⁺ ion is practically colorless. However, Mn²⁺ compounds, like MnF₂ and MnCl₂, have a high rose colour. The presence of a transition metal (TM) impurity in an insulating material leads to the appearance of physicochemical properties which are absent in the pure host lattice and may be useful for applied devices such as solid-state lasers, storage phosphors, etc. Despite a doped material being certainly more complex than a pure one. ${\rm Mn}^{2+}$ has the 3d⁵ configuration and from the Tanabe-Sugano diagram it follows that the ground level is $^6{\rm A}_1$. Emission arises from the $^4{\rm T}_1$ ($^4{\rm G}$) level, which shifts to lower energies for higher crystal field strengths. All optical absorption transitions are parity and spin forbidden. Generally, Mn^{2+} -activated phosphors are divided into two classes: those with green emission and those with orange-to-red emission. In octahedral surroundings with large crystal field the emission is usually red; in tetrahedral surroundings with a much smaller crystal field the emission is usually green. A well-known example belonging to the latter class is $ZnGa_2O_4$: Mn^{2+} . Another possibility to obtain a green Mn^{2+} emission is to choose a lattice in which Mn^{2+} is on a site, which is considerably larger than the Mn^{2+} radius. This requirement is met in compounds like SrB_6O_{10} : Mn^{2+} in which the Mn^{2+} emission is at 512 nm². Also GdF_3 : Mn^{2+} offers a large site for Mn^{2+} . If the Mn^{2+} ion is positioned on a regular Gd^{3+} site, it is surrounded by eight Fions. The F- coordination resembles that of a twisted cube³. Lammer and $Blasse^4$ reported for GdF_3 : Mn^{2+} emission with a maximum at 520 nm. Rare earth impurity ions was extensively studied because of its high sensitivity and its ability to store the incident energy 5,6 giving it suitability for radiation dosimetry. The material has been marketed as a commercial TL dosimeter, CaF_2 : Eu, under the commercial name TLD-200. On the other hand, luminescence studies of SrF_2 and BaF_2^{7-10} doped with rare earths has received much less attention, despite their intense luminescence. For BaF_2 Lucas and Kapsar studied the luminescence properties of BaF_2 : Eu and the possibility of using this material in radiation measurements. CaF_2 : Mn does not give any fluorescence under the UV excitation while CaF_2 : Ce gives a characteristic Ce^{3+} fluorescence emission with UV light excitation .The combination of Ce, Mn in the CaF_2 lattice however gives brilliant Mn^{2+} fluorescence emission in addition to that of Ce^{3+} on UV excitation due to energy transfer from Ce^{3+} to Mn^{2+} ions. # **Material and Methods** CeSO₄Cl (pure); and CeSO₄Cl: Mn phosphors were prepared by a wet chemical method. CeCl₃ and Ce₂(SO₄)₃ of analar grade were taken in a stoichimetric ratio and dissolved separately in double distilled de-ionized water, resulting in a solution of CeSO₄Cl (equation 1). Water-soluble sulphate salt of manganese was then added to the solution to obtain CeSO₄Cl: Mn. Confirming that no undissolved constituents were left behind and all the salts had completely dissolved in water and thus reacted. $$CeCl3 + Ce2(SO4)3 \rightarrow 3CeSO4Cl$$ (1) The compounds CeSO₄Cl (pure) and CeSO₄Cl: Mn in its powder form was obtained by evaporating on 80 °C for 8 hours. The dried samples were then slowly cooled at room temperature. The resultant polycrystalline mass was crushed to fine particle in a crucible. The powder was used in further study. Formation of the compound was confirmed by taking the x-ray diffraction (XRD) pattern that matched with the standard data available. Formation of the compound was confirmed by taking the x-ray diffraction (XRD) pattern. The photoluminescence (PL) emission spectra of the samples were recorded using Fluorescence spectrometer (Hitachi F-4000). The same amount of sample was used in each case. Emission and excitation spectra were recorded using a spectral slit width of 1.5 nm. # **Results and Discussion** **Photoluminescence (PL) in CeSO₄Cl: Mn:** Transition metal ions have been widely used in luminescent materials, e.g., Mn²⁺, a transition metal center, has been doped into more than 500 inorganic hosts¹² for luminescence with emission range from 490 to 750 nm. According to reports, the 3d⁵ multiplet energies of Mn²⁺ in crystals depend largely on the covalency interaction with the host crystal or the crystal field, because the 3d electrons of the transition metal ions are the outermost electrons. The tetrahedral coordinated Mn²⁺ ion gives a green emission, while the octahedral coordinated Mn²⁺ ion exhibits an orange-to-red emission¹³. Mn²⁺ emission at 535 nm was observed in the present host due to ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ transition. This corresponds to blue-green part of the visible spectrum. An excitation spectrum is peaking at 254 nm wavelength whereas Ce3+ contained in a host peaking an emission at 310 nm due to 5d \rightarrow 4f transition as shown in figure-2. Figure-3 shows emission spectrum with various contents of Mn²⁺ ions. In the figure the excitation spectrum (monitoring at 535 nm emission) has intense broad bands with maxima at 235 nm. Selecting 235 nm excitation wavelength, it was recorded the emission spectra for Mn doped ions in CeSO₄Cl host. The curves a, b, c, d, and e show the emission spectra for the same host with Mn a) 1, b) 0.5, c) 0.3, d) 0.2, and e) 0.1 mol.%, concentrations respectively. The emission spectra shows single peak having sharp shape and strong intensity at 535 nm (green emission). Figure-4 shows schematic Mn²⁺energy level diagram in CeSO₄Cl host in which 535 nm emissions comes from ${}^{4}T_{1}$ to ${}^{6}A_{1}$ ground state excited at 254 nm. # Conclusion The primary objective to present this paper is the development and implementation of inexpensive CeSO₄Cl: Mn green emitting material for photoluminescence study. Mn²⁺ emission at 535 nm was observed at green region in the present host due to $^4T_1 \rightarrow ^6A_1$ transition excited at 254 nm. Here we report an investigation of CeSO₄Cl: Mn material which have very low toxicity and cost, and can be prepared in open air atmosphere using simple wet chemical method. The CeSO₄Cl: Mn phosphor may be used as a lamp phosphor. PL excitation spectrum (λ_{exc} = 254 nm) of CeSO₄Cl: Mn _{0.1} mole% PL emission spectra (\(\lambda \text{emi} = 535 \text{ nm} \) of CeSO₄Cl: Mn a) 1, b) 0.5, c) 0.3, d) 0.2, e) 0.1 mol. % Figure-4 Schematic Mn²⁺energy level system in CeSO₄Cl # Acknowledgements Author is thankful to University Grant Commission (UGC), New Delhi Government of India, for the financial support. # References - **1.** Blasse G. and Grabmaier B.C., Luminescent Materials. Springer-Verlag, Berlin, **232**, (**1994**) - 2. Koskentalo T., Leskela M. and Niinisto L., *Mater.Res.Bull.*, **20**, 265-271 (**1985**) - **3.** Wyckoff R.W.G., Crystal Structures, **2(2)**, edn.Wiley, New York **(1964)** - **4.** Lammers M.J.J, and Blasse G., Nanotechnology Applications for Clean Water, *Phys.Status Solidi* (b), **127**, 663-669 (**1985**) - **5.** Sunta C., A review of thermoluminescence of calcium fluoride, calcium sulphate and calcium carbonate, *Radiat. Prot. Dosim.*, **8**, 25-32 (1984) - **6.** McKeever S.W.S., Moscovitch M. and Townsend P.D., Thermoluminescence Dosimetry Materials: Properties and Uses (Ashford: Nuclear Technology) (1995) - 7. Chaoshu Shi, Zhijian Xie, Deng Jie, Dong Yi, Xiaoyu Yang, Yiguan Hu, Yangchao Tian, Kan Ya and Chen Gun, Thermoluminescence of BaF2: RE (Ce, Eu, Eu) crystals, *J. Electron Spectrosc. Relat. Phenom.*, 79, 87-92 (1996) - **8.** Becker J., Zimmerer G. and Shi C., Anion- and cation-type energy transfer in Ba_{F2}: Eu, *J. Lumin.*, **72**, 906-911 (**1997**) - 9. Salis M., Investigating crystal defects in BaF2 and SrF2 by thermoluminescence experiments Nuovo Cimento D 19, 95-100 (1997) - **10.** Drozdowski W., Przegietka K., Wojtowicz A. and Oczkowski, H. Charge traps in Ce-doped CaF2 and BaF2, *Acta Phys. Pol.* A **95**, 251-256 (**1999**) - **11.** Lucas A. and Kapsar B., The thermoluminescence of BaF2:Eu Proc. 4th Int. Conf. on Luminescence Dosimetry (Krakow), **2**, 507-512 (**1974**) - **12.** Blasse G., Bril A., The absorption and emission spectra of some important activators, *Phillips Tech. Rev.*, **31**, 304 (1970) - **13.** Palumbo D.T., Brown J.J., Jr., Electronic States of Mn²⁺Activated Phosphors, *J. Electrochem. Soc.*, **117**, 1184 (**1970**)