International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis and Characterisation of Nano crystalline Neodymium Nickelate (NdNiO3) Powders using Low Temperature Molten Salt Technique

Author Affiliations

  • 1Department of Chemistry, St. Joseph’s College, Tiruchirappalli - 620 002, Tamil Nadu, INDIA
  • 2 Electropyrometallurgy Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 006, Tamil Nadu, INDIA

Res.J.chem.sci., Volume 2, Issue (8), Pages 37-42, August,18 (2012)


The ultrafine neodymium nickelate (NdNiO3) powders have been prepared by molten flux method using oxide precursors. The synthesized materials were characterised using XRD, FTIR, CHNS, EDAX and EPR analytical techniques. The morphology of the synthesized crystals were scrutinized using scanning electron microscopy (SEM). The XRD analysis has shown that the synthesized crystal has possessed cubic structure. FTIR spectrum exhibits the absorption bands for the Nd-O stretching vibration and Ni-O bands at different wave lengths. The CHNS analysis presents the impurities level in the synthesized compound. EDAX analysis gives the concentration of Nd, Ni and O ions in the compound. The lone pair of electron state is identified from the EPR spectrum. The SEM micrographs depicts the presence of fine crystallites with assorted morphology. The average particle size of the powders is ranging between 25-35 m. From the above studies, it has been concluded that pure crystals of NdNiO3 compound can be synthesized by low temperature molten salt technique.


  1. Damay F., Nguyen N., Maignan A., Hervieu M. and Raveau B., Colossal magnetoresistance properties of samamrium based manganese perovskite, Solid State Commun., 98, 997 (1996)
  2. Lagouri Th., Dedoussis Sp., Chardalas M. and Liolios,Positron annihilation studies in high-Tc superconductors RBaCu, R: La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er A., Phys. Lett. A, 229, 259 (1997)
  3. Junmo Koo, Jae Hyeok Jang, and Byeong- Soo Bae, Crystallization Behavior of Sol–Gel-Derived Strontium Barium Niobate Thin Films, J. Am. Ceram. Soc., 84, 193 (2001)
  4. Barote Maqbul A., Ingale Babasaheb D., Tingre Govind D., Yadav Abhijit A., Surywanshi Rangrao V. and Masumdar Elahipasha U., Some Studies on Chemically Deposited n-PbSe Thin Films, Res.J.Chem.Sci., 1(9), 37-41 (2011)
  5. Rao M.C. and Hussain O.M. Optical Properties of Vacuum Evaporated WO3 Thin Films, Res.J.Chem.Sci., 1(7), 76-80 (2011)
  6. Panneerselvam M. and Rao K.J., Microwave preparation and sintering of industrially important perovskite oxide LaMO3(M = Cr,Co,Ni), J. Mater. Chem,13, 596 (2003)
  7. Suddhakar C. and Vannice M.A., Preparation and characterization of palladium dispersed on rare earth oxide support, Applied Catalysis, Appl. Catal., 14, 47 (1985)
  8. Suddhakar C. and Vannice M.A., Methanol and methane formation over palladium/rare earth oxide catalysts, J. Catal., 95, 227 (1985)
  9. Mendelovici M. and Steinberg, Methanation and water-gas shift reactions over PtCeOM., J. Catal.,96, 285 (1985)
  10. Padeste C., Cant N.W. and Trimm D.L., Catal. Lett., 18, 305 (1993)
  11. Diaz H., Marcq J.P., Pinabiau M. and Barbaux Y., Eur. Pat., 8,508, 210 (1985)
  12. Sanchez M.G. and Gazquez J.L., oxygen vacancy model in strong metal-support interaction, J. Catal., 104, 120 (1987)
  13. Wan H., Chao Z., Weng W., Zhou X, Cai J. and Tsai K., Constituent selection and performance characterization of catalysts for oxidative coupling of methane and oxidative dehydrogenation of ethane Catal. Today, 30, 67 (1996)
  14. Herrmann J.M., Hoang-Van C., Dibansa L. and Hari-vololonola R., Anin Situ Electrical Conductivity Studyof a CeOAerogel Supported Palladium Catalyst in Correlation with the Total Oxidation of Propane, J. Catal.,159, 361(1996)
  15. DeLeitenburg C., Trovarelli A., Llorca J., Cavani F. and Bini G.,The effect of doping CeO with zirconium in the oxidation of isobutene, Appl. Catal., 139, 161 (1996)
  16. Kawar S.S Chalcogenide Thin Films Having Nanometer Grain Size for Photovoltaic Applications, Res.J. Chem.Sci., 1(8), 31-35 (2011)
  17. Okereke N.A. and Ekpunobi A.J. XRD and UV-VIS-IR Studies of Chemically-Synthesized Copper Selenide Thin Films, Res.J.Chem.Sci., 1(6), 64-70 (2011)
  18. Bae D.S., Han K.S. and Adair J.H., Synthesis and Microstructure of Pd/SiO Nanosized Particles by Reverse Micelle and Sol-Gel Processing, J. Mater. Chem., 12, 3117(2002)
  19. Alexendrescu R., Morjan I., Dumitrache F., Scarisoreanu M., Soare I., Fleaca C., Birjega R., Popovici E., Gavrila L., Prodan G., Ciupina V., Filoti G., Kuncser V. and Vekas L.,Photochemistry Aspects of the Laser Pyrolysis Addressing the Preparation of Oxide Semiconductor Photocatalysts, Int. J. Kawar .S Photoenergy, 11 (2008)
  20. Michitaka O. and Shusaku M., Nippon Kagakkai Koen Yokoshu, 83(1), 378 (2008)
  21. Tao J., Ma J., Wang Y., Zhu X., Liu J., Jiang X., Lin B. and Ren Y., J. Amer. Cer. Soc., 89(II), 3554 (2008)
  22. Siegel et al., United States Patent, No. , 128, 081
  23. Peterson et al., United States Patent No. 6, 580, 051
  24. Pawar M.J. and Nimbalkar V.B., Synthesis and phenol degradation activity of Zn and Cr doped TiO2 Nanoparticles, Res.J.Chem.Sci., 2(1), 32-37 (2012)
  25. Mao Y., Park T.J, Zhang F., Zhou H. and Wong S.S., Small, 3,1122 (2007)
  26. Yoon K.H. and Kang D.H., Molten salt synthesis of lead-based relaxors, J. Mater. Sci. 33, 2977 (1998)
  27. Yuanbing Mao, Xia Guo, Jian Huang Y., Kang Wang L, and Jane P. Chang, Luminescent Nanocrystals with Composition Synthesized by a Kinetically Modified Molten Salt Method, J. Phys. Chem. C, 113,1204 (2009)
  28. Cushing B.L., Kolesnichenko V.L. and Connor C., J.O. Chem. Rev. 1043893 (2004)
  29. Jansen M., A Concept for Synthesis Planning in Solid-State Chemistry Angew. Chem., Int. Ed. 41 3746 (2002)
  30. Weng X., Boldrin P., Abrahams I., Skinner S.J, Darr,Direct Syntheses of Mixed Ion and Electronic Conductors LaNi10 and LaNi from Nanosized Coprecipitates, J. A.Chem. Mater.,19,4382 (2007)
  31. Helan M., John Berchmans L., Synthesis of LiSm0.01Mn1.99O4 by molten salt technique, journal of rare earths, 28, 255 (2010)
  32. Helan M., J. Berchmans L., Syamala Kumari V.S., RaviSankar R and Shanmugam V. M, Molten salt synthesis of LiGd0·01Mn1·99 using chloridecarbonate melt, Materials Research Innovations 15, 2, 130 (2011)
  33. Helan M., John Berchmans L., Timy Jose.P, Visuvasam.A, Angappan S.Molten salt synthesis of iMn using chloride–carbonate melt, Materials Chemistry and Physics, 124, 439–442 (2010)
  34. Ignatius Arockiam S., John Berchmans L., Angappan S., Visuvasam A., Mani V, Synthesis of Lanthanum Nickelate and Praseodymium Substituted Compounds by Molten Salt Technique, Materials Science Forum 69967-78 (2012)
  35. Silva Z-R, Fernandes J.D.G, Melo D.M.A., Alves C., Jr. Leite E.R., Paskocimas C.A., Longo E., Bernardi M.I.B.Photoluminescence in amorphous YNiO and La0.5Nd0.5NiOsystems, Mater. lett. 56, 232 (2002)
  36. Fernandes J.D.G., Melo D.M.A., Zinner L.B., Salustiano C.M., Silva Z.R., Martinelli A.E., Cerqueira M., Alves Ju´nior C., Longo E., B.Bernardi M.I., Low temperature synthesis of single-phase crystalline LaNiOperovskite via pechni method, Mater. Lett. 53 122 (2002)