Kinetics and Mechanism of the Ring Opening of 3-carboethoxycoumarin by Sodium Hydroxide and Hydrazine

Hassan A. Ewais ${ }^{1,2_{*} *}$, Abdulla M. Asiri ${ }^{1}$, Iqbal M.I. Ismail ${ }^{1}$ Salem A. Hameed ${ }^{1}$ and Ahmed A. Abdel-Khalek ${ }^{2}$
${ }^{1}$ Chemistry Department, Faculty of Science, King Abdulaziz University, P.O Box.80203, Jeddah 21413, SAUDI ARABIA
${ }^{2}$ Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, EGYPTE

Available online at: www.isca.in
Received $28^{\text {th }}$ August 2012, revised $3^{\text {rd }}$ September 2012, accepted $15^{\text {th }}$ September 2012

Abstract

The kinetics of the ring opening of 3-carboethoxycoumarin (I) by sodium hydroxide and hydrazine have been studied spectrophotometrically over the $20-40^{\circ} \mathrm{C}$ range. The reaction rate of 3-carboethoxy coumarin (I) with sodium hydroxide is more than it is reaction with hydrazine. The reaction is first order with respect to both [I] and [OH] or [Hyd]. A possible mechanism and derived rate law for these reactions are proposed. The effects of cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecylsulfate (SDS, an anionic surfactant), on the reaction rate have been studied. CTAB accelerates the rate of reaction while SDS inhibits. Enthalpies and entropies of activation for these reactions have been calculated.

Keywords: 3-carboethoxycoumarin; Ring opening; Hydrazine; Micelles; Thermodynamic activation parameters.

Introduction

The general chemical structure of coumarins consists of a benzene moiety fused to α-pyrone rings and most of them have a very efficient fluorescing ability. Coumarin derivatives possess a wide range of applications as anticoagulants ${ }^{1}$, cytotoxicity ${ }^{2}$, photosensitizers ${ }^{3}$, anticancer 4, antimicrobial ${ }^{5}$, chemosensor ${ }^{6}$ and anti-inflammatory agents ${ }^{7}$.

The base hydrolysis of both coumarin and thiocoumarin have been studied in different binary aqueous-methanol mixtures at temperature range from 288 to $313 \mathrm{~K}^{8}$. The activation parameters of the reactions were evaluated. Moreover, the change in the activation barrier of the investigated compounds from water to water-methanol mixtures were estimated from the kinetic data. Also, coumarin is hydrolyzed by specific hydroxyl-ion-catalyzed solvolysis and has been characterized as a function of pH^{9}. The hydrolyses of 3-chlorocoumarin, 3bromocoumarin, and 3- and 4-methylcoumarin were studied in 30% dioxane for the acid-lactone equilibrium. The halogen substituents showed pronounced accelerating effects consistent with the electronegative group acceleration of hydroxyl-ion attack on the carbonyl carbon, whereas the methyl substituents did not significantly modify the reactivity of coumarin ${ }^{9}$.
Ionic micelles in water speed bimolecular reaction rates of counterions with micellar-bound substrates but in general second-order rate constants at the micellar pseudo-phase are not very different from those in water ${ }^{10,11}$. This observation suggests that micellar enhancement of rates of bimolecular reactions is due largely to concentration of both reactants in the small volume of the micelles.
It has been reported ${ }^{12,13}$ that the reaction of coumarines with amines and hydrazines take place at the carbonyl group. 3-(ω -
bromoacetyl) coumarin react with phenyl hydrazine, gave the corresponding hydrazone ${ }^{14}$. The hydrolysis of coumarin has been investigated previously by spectrophotometric method ${ }^{15}$. The lactone ring of a coumarin is opened by alkali to give a salt of a coumarinic acid ${ }^{16}$. The initial action of alkali on 3carboethoxycoumarin (I) is always the opening of the pyrone ring ${ }^{17}$. The action of hydrazine hydrate on coumarines, results in ring fission and formation of salicylaldazine ${ }^{18}$. Also, the action of hydrazine on 3-carboethoxycoumarin (I) results in ring fission and the formation of salicylaldazine(III) and dihydrazide of malonic acid ${ }^{19}$.

In the present work, we studied the kinetics and mechanism of the ring opening of 3-carboethoxycoumarin (I) by NaOH and hydrazine. The kinetic data gave an information about the stability of coumarin derivatives which are used in pharmaceutical field towards hydrolysis (scheme - 1).

Material and Methods

Experimental Section: Materials and Solutions: 3carboethoxycoumarin (I) was prepared by ethylation of the corresponding 3-hydroxycoumarin made by peckmann reaction ${ }^{20}$. Sodium hydroxide, hydrochloric acid, absolute ethanol and hydrazine hydrate were of BHD reagent grade, cetyltrimethylammonium bromide (Fluka) and sodium dodecylsulfate (Fluka). Doubly distilled water was used in the preparation of solutions.

Apparatus and procedure: The rate of reaction of 3carboethoxycoumarin (I) with NaOH and $\mathrm{N}_{2} \mathrm{H}_{4}$ was followed spectrophotometrically by monitoring the absorbance of the products at 385 nm , using a Milton Roy sp 601 spectrophotometer. All reactants were equilibrated at the
required temperatures before mixing in a thermostated water bath for ca. 15 min . in automatic circulation thermostat, thoroughly mixed and quickly transferred to an absorption cell. The temperature of the reacting solution was controlled, using automatic circulation thermostat. The thermostat was provided with a special pumping system for circulating water at regulated temperature in the cell holder. The average stabilizing accuracy as measured in the thermostat liquid was $\pm 0.1^{\circ} \mathrm{C}$. Pseudo-first order conditions were maintained in all runs by the presence of a large excess (>10-fold) of sodium hydroxide and hydrazine.

Pseudo-first order rate constants, $k_{\text {obs }}$, obtained from the slopes of $\ln \left(A_{\infty}-A_{\mathrm{t}}\right)$ versus time plots, where A_{t} and A_{∞} are absorbance at time t, and infinity, respectively. Enthalpy of activation, $\Delta \mathrm{H}^{*}$, and entropy of activation $\Delta \mathrm{S}^{*}$, were calculated using transition state theory equation (Eyring Equation) by plotting $\ln (k / T)$ against 1/T.
$\ln k / \mathrm{T}=\ln \mathrm{K} / \mathrm{h}+\Delta \mathrm{S} * / \mathrm{R}-\Delta \mathrm{H}^{*} / \mathrm{RT}$
where: K is the Boltzmann constant, h is the Plank's constant, R is the universal gas constant and T is the absolute temperature.

Results and Discussion

Kinetics of reaction of 3-carboethoxycoumarin (I) with NaOH : The kinetics of reaction of 3-carboethoxycoumarin (I) with NaOH were studied at temperatures $20-40{ }^{\circ} \mathrm{C}$ range for a range of NaOH and (I) concentrations. The plot of $\operatorname{Ln}\left(\mathrm{A}_{\infty}-\mathrm{A}_{\mathrm{t}}\right)$ versus time were linear up to 87% of the reaction, where A_{∞} and $\quad A_{t}$ absorbance at inifinity and at tim t respectively. The values of pseudo first-order rate constant, $\mathrm{k}_{\mathrm{obs}}$, obtained from the slopes of these plots are given in table-1. The results in table-1, show that $\mathrm{k}_{\text {obs }}$ was unaffected when the concentration of the (I) was varied at a constant NaOH concentration, indicating first order dependence on the (I) concentration.

Table-1
Dependence of the rate, $\mathrm{k}_{\mathrm{obs}}$, on $[\mathrm{I}]^{\mathrm{a}},[\mathrm{NaOH}]$ and temperatures

$\mathbf{1 0}^{\mathbf{3}}$$\left[\mathbf{O H}^{-}\right.$] $\mathbf{m o l ~ d m}$ $\mathbf{- 3}$	$\mathbf{1 0}^{\mathbf{3}} \boldsymbol{k}_{\text {obs }}\left(\mathbf{s}^{\mathbf{- 1}}\right)$				
0.40	0.77	0.96	1.10	1.48	1.98
0.48	0.91	1.11	1.38	1.83	2.55
0.56	1.12	1.32	1.53	2.26	2.97
0.80	1.65	2.05	2.46	3.25	4.74
1.60	2.98	3.83	4.67	5.81	8.06
2.40	4.18	5.02	6.21	7.75	9.61
3.20	5.29	6.21	7.30	9.43	11.76
4.00	6.06	7.56	8.85	12.50	18.20

${ }^{\mathrm{a}}[\mathrm{I}]=4.30 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} ; 10^{3} k_{\text {obs }}=4.48,4.76,4.61$ and 4.69 s^{-1} at 10^{5} [I] of $2.15,6.45,8.60$ and $10.75 \mathrm{~mol} \mathrm{dm}^{-3}$, respectively at $30^{\circ} \mathrm{C}$ and $\left[\mathrm{OH}^{-}\right]=1.60 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

At constant concentration of (I), $1 / \mathrm{k}_{\text {obs }}$ varies linearly with $1 /\left[\mathrm{OH}^{-}\right]$at different temperatures (figure-1), and the kinetic of reaction are described by equation (1).
Rate $=\left\{\mathrm{a}\left[\mathrm{OH}^{-}\right]_{\mathrm{T}} / 1+\mathrm{b}\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}\right\}[\mathrm{I}]_{\mathrm{T}}$
$1 / \mathrm{k}_{\mathrm{obs}}=1 / \mathrm{a}\left[\mathrm{OH}^{-}\right]+\mathrm{b} / \mathrm{a}$
The values of a and b were obtained from the slopes and the intercepts of figure-1.

In accordance with our findings and with those previous studies ${ }^{15-17}$ the mechanism of alkaline ring fission of 3carboethoxycoumarin (I) consists of a rate-determining attack on the (I) carbonyl group by hydroxide ion, followed by a fast fission of the cyclic oxygen-carbonyl bond. In the presence of an excess of base, the product of the reaction is the di-anion (IIc), whereas under conditions of limited basicity, the monoanion is formed. The proposed mechanism is described in scheme - 2 .

(II)

(I)

(III)

Scheme-1

(IIa)

(IIb)
(IIc)

Scheme-2

From the above mechanism, the rate of reaction is given by:
Rate $=\mathrm{k}_{1}[\mathrm{II}]=\mathrm{k}_{1} \mathrm{~K}_{1}[\mathrm{I}]\left[\mathrm{OH}^{-}\right]$
If $[\mathrm{I}]_{T}$ represents the total concentration of organic substance species, then
$[\mathrm{I}]_{\mathrm{T}}=[\mathrm{II}]+\left[\mathrm{II}_{\mathrm{a}}\right]$
By rearrangment, one gets
$[\mathrm{I}]_{\mathrm{T}}=[\mathrm{I}]+\mathrm{K}_{1}[\mathrm{I}]\left[\mathrm{OH}^{-}\right]=[\mathrm{I}]\left(1+\mathrm{K}_{1}\left[\mathrm{OH}^{-}\right]\right)$
Substitution for [I] from Equation (10) into Equation (8), gives
Rate $=\mathrm{k}_{1} \mathrm{~K}_{1}\left[\mathrm{OH}^{-}\right][\mathrm{I}]_{\mathrm{T}} /\left(1+\mathrm{K}_{1}\left[\mathrm{OH}^{-}\right]\right)$
$\mathrm{k}_{\text {obs }}=\mathrm{k}_{1} \mathrm{~K}_{1}\left[\mathrm{OH}^{-}\right] /\left(1+\mathrm{K}_{1}\left[\mathrm{OH}^{-}\right]\right)=\mathrm{k}_{1} \mathrm{~K}_{1}\left[\mathrm{OH}^{-}\right]+\mathrm{k}_{1}$
$1 / \mathrm{k}_{\text {obs }}=1 / \mathrm{k}_{1} \mathrm{~K}_{1}\left[\mathrm{OH}^{-}\right]+1 / \mathrm{k}_{1}$

The values of k_{1} at different temperatures are list in table-2. The values of the equilibrium constant, K_{1} was calculated from equation (13) as $44.8 \times 10^{-2} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ at $30^{\circ} \mathrm{C}$. The thermodynamic activation parameters including enthalpy and entropy associated with k_{1} were calculated by plotting $-\ln \mathrm{k}_{1} / \mathrm{T}$ against $1 / T$, (c.f. figure-2). Enthalpy of activation, ΔH^{*} and entropy of activation, $\Delta \mathrm{S}^{*}$, are equal to $20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and -194.7 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

Kinetics of 3-carboethoxycoumarin (I)/ $\mathbf{N}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$ reaction: The kinetics of reaction of 3-carboethoxy- coumarin (I) with hydrazine were studied at temperatures $20-40^{\circ} \mathrm{C}$ range for a range of hydrazine and 3-carboethoxycoumarin (I) concentrations. The plot of $\operatorname{Ln}\left(\mathrm{A}_{\infty}-\mathrm{A}_{\mathrm{t}}\right)$ versus time were linear up to 85% of the reaction, where A_{∞} and A_{t} absorbance at inifinity and at tim t respectively. The values of pseudo first-
order rate constant, $\mathrm{k}_{\mathrm{obs}}$, obtained from the slopes of these plots are given in table-3. The results in table-3, show that $\mathrm{k}_{\mathrm{obs}}$ was unaffected when the concentration of the 3carboethoxycoumarin (I) was varied at constant hydrazine concentration, indicating that first order dependence on the 3carboethoxycoumarin (I) concentration. The rate law at fixed [$\mathrm{N}_{2} \mathrm{H}_{4}$] is given by.
Rate $=\mathrm{k}_{\text {obs }}[\mathrm{I}]$
Table-2
Values of k_{1} at different temperatures

Temperature $\left({ }^{\mathbf{}} \mathbf{C}\right)$	$\mathbf{1 0}^{\mathbf{2}} \mathbf{k}_{\mathbf{1}} \mathbf{(s)}$
20	4.09
25	5.33
30	6.50
35	7.10
40	8.76

The dependence of $\mathrm{k}_{\text {obs }}$ on hydrazine was examined over the (1.0-6.0) $\times 10^{-2} \mathrm{M}$ concentration range at different temperatures (figure-3). The results (table-3), show that $\mathrm{k}_{\mathrm{obs}}$ varies linearly with $\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]$, according to equation (15).
$\mathrm{k}_{\mathrm{obs}}=\mathrm{k}_{2}+\mathrm{k}_{3}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]$
Rate $=[\mathrm{I}]\left\{\mathrm{k}_{2}+\mathrm{k}_{3}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]\right\}$
The k_{2} and k_{3} values, (table-4) over the temperature range used, were obtanied from the intercepts and the slopes respectivily of figure-3. Thermodynamic activation parameters associated with k_{2} and k_{3} obtained from from linear least-square fit to the transition state theory equation and figure-4 at different temperatures were calculated by plotting $\operatorname{lnk}_{2} / T$ and $\operatorname{lnk}_{3} / T$ against $1 / \mathrm{T}$ (figures-4). The enthalpy of activation $\Delta \mathrm{H}_{2} *$ and $\Delta \mathrm{H}_{3} *$ associated with k_{2} and k_{3} are 36.1 and $23.4 \mathrm{kJmol}^{-1}$, respectively, The corresponding entropies of activation $\Delta \mathrm{S}_{2}{ }^{*}$ and $\Delta \mathrm{S}_{3}{ }^{*}$ were calculated as -185.5 and $-190.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

From equation (15), it was found that one path of the reaction is independent of hydrazine. This observation has drawn our attention to the possibility of hydrolysis of 3carboethoxycoumarin (I) by $\mathrm{H}_{2} \mathrm{O}$. The action of hydrazine on 3carboethoxycoumarin (I), which results in ring fission and formation salicylaldazine ($\mathrm{III}_{\mathrm{a}}$) and dihydrazide of malonic acid^{19}. The mechanistic pathway for the reaction of 3-carboethoxy- coumarin (I) with hydrazine may be represented in scheme - 3 .

Scheme-3

Table-3
Dependence of the rate, $\mathbf{k}_{\text {obs }}$, on $[I]^{\mathrm{a}}$, [Hydrazine] and temperatures.

$\begin{aligned} & 10^{2}[\mathrm{Hyd}] \\ & \mathrm{mol} \mathrm{dm}^{-3} \\ & \hline \end{aligned}$	$10^{3} k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$				
	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
1.0	0.80	1.22	1.45	1.73	1.89
2.0	1.23	1.82	2.08	2.33	2.91
3.0	1.65	2.10	2.70	3.15	3.75
4.0	2.18	2.66	3.38	4.12	4.81
5.0	2.50	3.22	3.95	4.87	5.52
6.0	2.81	4.03	4.76	5.42	5.94

${ }^{2}[\mathrm{I}]=4.30 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} ; 10^{3} k_{\mathrm{obs}}=2.54,2.76,2.82$ and $2.68 \mathrm{~s}^{-1}$ at $10^{5}[\mathrm{I}]$ of $2.15,6.45,8.60$ and $10.75 \mathrm{~mol} \mathrm{dm}^{-3}$, respectively at $30^{\circ} \mathrm{C}$ and $[\mathrm{Hyd}]=3.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.

Table-4
Values of $k_{\mathbf{2}}$ and k_{3} at different temperatures.

Temperature (${ }^{\circ} \mathrm{C}$)	$10^{4} \mathrm{k}_{2}\left(\mathrm{~s}^{-1}\right)$	$10^{2} \mathrm{k}_{3}\left(\mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right)$
20	4.23	4.11
25	6.27	5.37
30	7.69	6.53
35	8.99	7.73
40	12.00	8.35

Figure-1
Plot of $\mathbf{1 / k} \mathbf{k}_{\text {obs }}$ versus $\mathbf{1 / [O H] ~ a t ~ d i f f e r e n t ~ t e m p e r a t u r e s ~}$

Figure-2
Plot of Ink ${ }_{1} /$ T versus 1/T

Figure-3
Plot of k obs versus [Hyd] at different temperatures

Figure-4
Plot of In K2/T and Ink2/T versus 1/T

From the above mechanism, the rate of the reaction is given by
Rate $=\mathrm{k}_{4}[\mathrm{I}]\left[\mathrm{H}_{2} \mathrm{O}\right]+\mathrm{k}_{5}[\mathrm{I}]\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]=[\mathrm{I}]\left\{\mathrm{k}_{4}\left[\mathrm{H}_{2} \mathrm{O}\right]+\mathrm{k}_{5}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]\right\}$ (20)
If $\mathrm{k}_{4}\left[\mathrm{H}_{2} \mathrm{O}\right]$ is large, $\mathrm{k}_{4}\left[\mathrm{H}_{2} \mathrm{O}\right]$ is equal constant $\left(\mathrm{k}_{6}\right)$
Rate $=[\mathrm{I}]\left\{\mathrm{k}_{5}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]+\mathrm{k}_{6}\right\}$
The rate law is given by equation (21) which is consistent with the experimental rate law equation (16). A comparsion of equations (16) and (21), shows: $\mathrm{k}_{2}=\mathrm{k}_{6}$ and $\mathrm{k}_{3}=\mathrm{k}_{5}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]$

Alkaline hydrolysis of 3-carboethoxycoumarin (I) with sodium hydroxide and hydrazine which results in the ring opening of the coumarin ring. At the same condition, the rate of reaction of 3carboethoxycoumarin (I) with sodium hydroxide is more than it is reaction with hydrazine. This may be due to sodium hydroxide is more basic than hydrazine.

The ring opening step is endothermic as indicated by the positive $\Delta \mathrm{H}^{*}$ value. Thus the relatively small enthalpy of activation, $\Delta \mathrm{H}^{*}$, can be explained in terms of the formation of a more solvated intermediate ${ }^{21}$. The negative ΔS^{*} value was claimed to be largely the result of substantial mutual ordering of the solvated water molecules on the intermediate ${ }^{21}$.

Effect of micelles on the rate of reaction of 3carboethoxycoumarin (I) with $\mathbf{N a O H}$: Micellar catalysis has
received considerable attention in view of the analogies drawn between micellar and enzyme catalyses ${ }^{11,22}$. Micelles increase rates of bimolecular reactions by concentrating both the reactants at their surfaces. Electrostatic-, approximation-, and medium-effects are responsible for the incorporation of reactants into or onto a micelle. In order to verify the role of micelles on the hydrolysis of 3-carboethoxycoumarin (I) by NaOH , cationic and anionic micelles were chosen. The effect of micelles (CTAB \& SDS) on the reaction of 3carboethoxycoumarin (I) with NaOH was carried at $[\mathrm{I}]=4.30 \mathrm{x}$ $10^{-5} \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{OH}^{-}\right]=1.60 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ and $\mathrm{T}=30.0^{\circ} \mathrm{C}$ over the micelles concentration range $(2.0-20.0) \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. Figure-5, shows the effect of CTAB cationic micelles on the sensitivity for the range $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ to $20.0 \times 10^{-3} \mathrm{~mol}$ dm^{-3}. The reaction rate increases with increasing [CTAB] up to $\geq 16.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ and remains constant at higher [CTAB]. This may be due to the dilution effect. The role of CTAB micelles in catalysis can be explained by incorporation/ solubilisation of $[\mathrm{I}] /\left[\mathrm{OH}^{-}\right]$in the Stern layer of CTAB micelles through electrostatic and hydrophobic interactions. These results are in good agreement with our previous observations. ${ }^{23}$ The effect of SDS anionic micelles on the reaction rate for the range $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ to $20.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ was studied. Figure-5, show a continuous decrease of the reaction rate, $\mathrm{k}_{\mathrm{obs}}$, with increasing of [SDS]. This behavior could be rationalized in terms of anionic micelles repel the hydroxide ions.

Figure-5
Variation of $\mathrm{k}_{\text {obs }}$ with [micelles] (CTAB or SDS) at $30^{\mathbf{0}} \mathrm{C}$

Conclusion

The action of sodium hydroxide on the ring opening of 3carboethoxycoumarin (I) is more than its action with hydrazine. In two cases, the reaction is pseudo-first order and the rate of reaction increases with increasing of temperature. CTAB increases the reaction rate while SDS decreases. The step of ring opening of 3-carboethoxycoumarin is endothermic as indicated by the positive $\Delta \mathrm{H}^{*}$ value.

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah. The authors, therefore acknowledge with thanks DSR technical and financial support.

References

1. Lowenthal J. and Birnbaum H., Vitamin K and Coumarin Anticoagulants: Dependence of Anticoagulant Effect on Inhibition of Vitamin K Transport, Science, 11, 181-183 (1969)
2. Kostova I., Grigorov P., Balkansky S. and Stefanova T., Synthesis,Characterization and Cytotoxicity of New $\mathrm{Ho}(\mathrm{III})$ and $\operatorname{Er}(\mathrm{III})$ Complexes, Indian J. of Biotechnology, 10, 387-391 (2011)
3. Bryantseva G., Sokolova I.V., Tsyrenzhapova A. B., Selivanov N. I., Khilya V.P. and Garazd Y.L., Fluorescent Characteristics of Coumarin Photosensitizers, J. Appl. Spectrosc., 75, 700-705 (2008)
4. Monga P.K., Sharma D. and Dubey A., Comparative Study of Microwave and Conventional Synthesis and Pharmacological activity of Coumarins: A Review, J. Chem. and Pharm. Res., 4, 822-850 (2012)
5. Cottigli F., Loy G., Garau D., Floris C., Caus M., Pompei R., and Bonsignore L., Antimicrobial Evaluation of Coumarins and Flavonoids From the Stems of Daphne Gnidium L, Phytomedicine, 8, 302-305 (2001)
6. Al-Kady A.S., Gaber M., Hussein M.M. and Ebeid, E.M., Fluorescence Enhancement of Coumarin Thiourea Derivatives by $\mathrm{Hg}(2+), \operatorname{Ag}(+)$, and Silver Nanoparticles, J. Phys. Chem. A, 113, 9474-9484 (2009)
7. Fylaktakidou K.C., Hadjipavlou-Litina D.J., Litinas K.E. and Nicolaides D.N., Coumarin Derivatives with Antiinflammatory/Antioxidant Activities, Curr. Pharm. Des., 10, 3813-3833 (2004)
8. El-Khatib R.M. And Nassr L.A., Reactivity Trends of the Base Hydrolysis of Coumarin and Thiocoumarin in Binary Aqueous- Methanol Mixtures at Different Temperatures. Spectrochim Acta A Mol Biomol Spectrosc., 67, 643-648 (2007)
9. Lippold B.C. and Mielck J. B., Kinetics and Mechanisms of Lactonization of Coumarinic Acids and Hydrolysis of Coumarins, J. Pharm. Sci., 60, 396-405 (1971)
10. Fendler J.H. and Fendler E.J., Micellar and Macromolecular Systems, Academic Press, New York, (1975)
11. Menger F.M. and Portnoy C.E., Base Hydrolysis of Trichlorotoluene to Benzoic Acid in the Presence and Absence of Micelles, J. Am. Chem. Soc., 89, 4698-4703 (1967)
12. Zagorevskii V., Savelev V., Dudykina N. and Portnova S., Alkaline Hydrolysis of Coumarine by Amine and Hydrazine, Zh. Org. Khim., 3, 568-572 (1967)
13. Mustafa A., Hishmat O., Wassef M., Ebrashi N. and Nawar A., Reaktionen substituierter Cumarine, Furocumarine und Khellinon-styryl-Derivate mit Hydrazin und Phenylhydrazin, Eur. J. Org. Chem., 692, 166-173 (1966)
14. Ebrahim I., Awatef E. F, Alkaline Hydrolysis of Coumarin by Phenyl Hydrazine, Al-Azhar Bull. Sci., 7, 1173-1178 (1998)
15. Mattoo B. N, Spectrophotometric Studuies of the Hydrolysis of Coumarin and Dissociation of ciscoumarinic acid, Trans. Faraday Soc., 53, 760-766 (1957)
16. Decker H. and Becker P., Ring Openning of Coumarin Deravatives by Sodium Hydroxide, Ber., 55, 375-394 (1922)
17. Elderfield R.C, Heterocyclic Compounds, John Wiley \& Sons, New York, 2, 207 (1951)
18. Mustafa A., Hishmat O. H., Anwar, A.A. and Khalil K. M, Alkaline Hydrolysis of Coumarin by Hydrazine, Ann., 684, 194-198 (1965)
19. Sammour A., Marei A. and El-Ashry S, Alkaline Hydrolysis of 3-carboethoxycoumarin by Hydrazine, U.A.R. J. Chem., 13, 281-285 (1970)
20. Bargellini G. and Monti L., Preparation of 3carboethoxycoumarin by Peckmann Reaction, Gazzetta, 45, 90-94 (1915)
21. Weaver M.J. and Yee E.L., Activation Parameters for Homogeneous Outer-Sphere Electron-Transfer Reactions. Comparisons between Self-Exchange and Cross Reactions Using Marcus' Theory. Inorg Chem., 19, 1936-1943 (1980)
22. Bunton C.A. and Savelli G., Organic Reactivity in Aqueous Micelles and Similar as Semblies, Advances in Physical Organic Chemistry, vol. 22, 213-309 (1986)
23. Al-Awadi N. and Williams A., Reactions of Substituted Phenolate Ions with 4-nitrophenyllaurate Catalysed by Cationic Micelles, J. Org. Chem., 55, 4359-4364 (1999)
