International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Industrial Ecosystem: To reduce Global warming

Author Affiliations

  • 1My Green Tech. India (GAUCRAFT), Dayalbagh, Agra, UP, India
  • 2Department of Chemistry, Agra College, Dr. Bhimrao Ambedkar University, Agra, UP, India
  • 3Department of Applied Science (Chemistry), Faculty of Engineering and Technology (FET), Agra College, Agra, UP, India

Res.J.chem.sci., Volume 13, Issue (3), Pages 60-64, October,18 (2023)

Abstract

Green House Gases affect our environment and causes Global warming. That the some international and national endeavor to the as in to alleviate of enhances to the assemblage to chlorofluocarbon gasses’ effects by to idea of the carbon base credits. The carbon base market component has a target that allows the market mechanism to derived industrial and commercial processes towards reducing emissions and reduce the carbon intensively approach. This idea can be solved by the concept of Industrial Ecosystem. The industrial system has a deep connection with the natural ecosystem, which remains forever. Which offers a perspective in eco-adaptation and ecosystem. Because in the industrial ecological system it is very important and necessary to consider industries as an interactive system instead of separate components. It is imperative to connected industrial waste producers to an operating web of disposal sinks that also decrease the total amount of industrial waste material lost to the waste intermediate Processes.

References

  1. Krishnamurthy Rohini (2023)., A crucial global meeting to approve the Synthesis Report of the Intergovernmental Panel on Climate Change (IPCC) has begun in Switzerland from March 13th- 17th, 2023., The report provides an overview of the state of knowledge on the science of climate change.
  2. Adger, W. N., Arnell, N. W. & Tompkins, E. L. (2005)., Successful adaptation to climate change across scales., Global environmental change, 15(2), 77-86.
  3. Leal Filho, W., Azeiteiro, U. M., Balogun, A. L., Setti, A. F. F., Mucova, S. A. R., Ayal, D., Totin, E., Lydia, A. M., Kalaba, F. K., and Oguge, N. O. (2021)., The influence of ecosystems services depletion to climate change adaptation efforts in Africa., Elsv., Sci. of the Total Environm., 779, pp 146414.
  4. Feliciano, D., Recha, J., Ambaw, G., MacSween, K., Solomon, D., & Wollenberg, E. (2022)., Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia., Climate policy, 22(4), 427-444.
  5. Battisti, D. S., & Naylor, R. L. (2009)., Historical warnings of future food insecurity with unprecedented seasonal heat., Science, 323(5911), 240-244.
  6. Schuurmans C. J. E. (2021)., The world heat budget: expected changes Climate Change., CRC Press pp. 1- 15, ISBN 9781003069935. https://www. Taylorfrancis.com> 9781003069935-1.
  7. Weisheimer, A. and Palmer, T. (2005)., Changing frequency of occurrence of extreme seasonal temperatures under global warming: Geophysical Research Letters., J. Advan. Earth & space Sci., 32(20).
  8. Yadav, M. K., Singh, R., Singh, K., Mall, R., Patel, C., Yadav, S. and Singh, M. (2015)., Assessment of climate change impact on productivity of different cereal crops in Varanasi India., J. Associat. Agrometeorolog., 17(2), 179–184. https://www.agrimetassociation.org.
  9. Leppänen, S., Saikkonen, L., & Ollikainen, M. (2014)., Impact of Climate Change on cereal grain production in Russia. Agricultural Goods and Bads: Essays on Agriculture and Environmental Externalities.,
  10. Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L., & Stenek, V. (2021)., Climate change risk to global port operations., Nature Climate Change, 11(1), 14-20.
  11. Jurgilevich, A., Räsänen, A., Groundstroem, F., & Juhola, S. (2017)., A systematic review of dynamics in climate risk and vulnerability assessments., Environmental Research Letters, 12(1), 013002.
  12. Murshed, M. (2020)., An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia., Environmental Science and Pollution Research, 27(29), 36254-36281. https://doi.org/10.1007/s11356-020-09497-3.
  13. Hussain, M., Butt, A. R., Uzma, F., Ahmed, R., Irshad, S., Rehman, A. and Yousaf, B. (2020)., A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan., Environm. Monitor. & Assess., 192(1), 48. https://doi.org/ 10.1007/s10661-019-7956-4.
  14. Sovacool, B. K., Griffiths, S., Kim, J., Bazilian, M. (2021)., Climate change and industrial F-gases:- a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions., Renew. & Sustain. Energ. Revi. Elsev., 141(C). https://doi.org/10.1016/j.rser.110759
  15. Usman, M., & Balsalobre-Lorente, D. (2022)., Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load?., Energ. Poli. Elsev., 162(C). https://doi.org/j.enpol.2022.112780.
  16. Murshed, M., Nurmakhanova, M., Al-Tal, R., Mahmood, H., Elheddad, M., & Ahmed, R. (2022)., Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth mitigate ecological footprints in South Asia?., Energy Sources, Part B: Economics, Planning, and Policy, 17(1), 2038730.
  17. Sovacool, B. K. (2021)., Reckless or righteous? Reviewing the sociotechnical benefits and risks of climate change geoengineering., Energy Strategy Reviews, 35, 100656.
  18. Wilson-Rocheford, k., & McGuinness, M. (2015)., UNGC, Accenture. A call to climate action. New York., https://www.unglobalcompact.org/lirary/newsroom. accenture/3551.com.
  19. Wu, Y., Gu, F., Ji, Y., Guo, J., & Fan, Y. (2020)., Technological capability, eco-innovation performance, and cooperative R&D strategy in new energy vehicle industry: Evidence from listed companies in China., Journal of Cleaner Production, 261, 121157.
  20. Cecere, G., Corrocher, N., Gossart, C., & Ozman, M. (2014)., Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis., Research Policy, 43(10), 1827-1839.
  21. Levinthal, D. A. and Warglien, M. (1999)., Landscape design, designing for local action in complex worlds., Organ. Sci., 10(3), 342-357. https://doi.org./10.1287/orsc. 10,3,342.
  22. Wang, Y., Huscroft, J. R., Hazen, B.T., M. Zhang, M. (2018)., Green information, green certification and consumer perceptions of remanufctured automobile parts., Res. Conser. & Recycl., 128(1F), 187-19. https://doi.org/ j.resconrc.2016.07.015.
  23. Shabanpour, R., Mousavi, S. N. D., Golshani, N., Auld, J., & Mohammadian, A. (2017)., Consumer preferences of electric and automated vehicles., In 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 716-720). IEEE.
  24. Zhao, R., Geng, Y., Liu, Y., Tao, X. and Xue, B. (2018)., Consumers, J. Clean. Product., 171 (3), 1664-1671. https://doi.org./10.1016/j.jclepro.2017.10.10. 143.
  25. Giles, F. W. (2004)., From Sectoral Systems of Innovation to Socio-Technical Systems., Res. Poli., 33, 897–920. https://doi:10.1016/j.respol.2004.01.015.
  26. Markard, J., Raven, R., & Trufer, B. (2012)., Sustainability Transition: An Emerging Field of Research and Its Prospects., Res. Poli., 41, 955–967. https://doi.org/10.1016/j.respol.2012.02.013.
  27. Akbar, U., Lee, Q-L., Akmal, M. A., Shakib, M., W. Iqbal, W., (2021)., Nexus between agro-ecological efficiency and carbon emission transfer: evidence from China. Climate., Science. pollut. Res., 28, 18995-19007. https//doi:10.1007/ s11356-020-09614-2.
  28. Rahman, M. M., Alam, K., & Velayutham, E. (2021)., Is industrial pollution detrimental to public health? Evidence from the world’s most industrialized countries., BMC Public Health, 21(1), 1-11.
  29. Uzunali, A., and Yazici, T. (2022)., What is a carbon footprint? Environ Dev Sustain., Spri. Nature, pp 1-23. https://doi: 10.1007/s10668-022-02500-6.
  30. Wright, L. A., Kemp, S., & Williams, I. (2011)., Carbon footprinting’: towards a universally accepted definition., Carbon management, 2(1), 61-72.
  31. Carbon Credit. (2012)., Collins English Dictionary - Complete & Unabridged., 11th Edition. Retrieved October 04, 2012 from CollinsDictionary.com.
  32. Singh, S. K., Dixit, K., & Sundaram, S. (2014)., Algal-based CO2 sequestration technology and global scenario of carbon credit market: a review., Am J Eng Res, 3(4), 35-37.
  33. Singh, S. K., Jha, M. K., Bansal, A., & Singh, A. P. (2014)., Carbon credit market and algae-based CO2 sequestration technology: A review.,
  34. Chisti, Y. (2008)., Biodiesel from microalgae beats bioethanol., Trends in biotechnology, 26(3), 126-131.
  35. United States. Environmental Protection Agency. Office of Policy, Planning, and Evaluation. (1994)., Inventory of US greenhouse gas emissions and sinks., US Environmental Protection Agency, Office of Policy, Planning and Evaluation.
  36. Ehrenfeld, J. R. and Gertler, N. (1997)., Industrial ecology in practice. The evolution of interdependence at Kalundborg., J. Indust. Ecol., 1(1), 67–79.
  37. loquis (2023)., Kalundborg Industrial Park., https://www.loquis.com/en/loquis/2418869/kalundborg Eco industrial park. (Accessed 2023-07-01)