International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Green chemistry aspects in Analytical Chemistry applications

Author Affiliations

  • 1SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India
  • 2SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India

Res.J.chem.sci., Volume 13, Issue (2), Pages 29-39, June,18 (2023)

Abstract

Analytical chemistry, an important branch of chemistry, deals with the analysis of a huge number of samples in different forms for various purposes. Unfortunately, the analytical methods very often contribute to environmental problems. The irony is because many analytical procedures use hazardous and toxic chemicals. Thus the concept of ‘green chemistry’ needs to be viewed in the context of ‘green analytical chemistry’ (GAC). The green analytical chemistry emphasizes that the development of any new analytical method/process has to comply with relevant green chemistry principles to reduce the adverse impact of analysis on human health and the environment. This mini-review article outlines various aspects of GAC; concepts of green analysis, green sample preparation, instrumentation, green solvents, and selective green analysis examples. This paper further emphasizes implementing the GAC concept in an analytical laboratory in real sense. This requirement demands; i) appropriate measurements of the environmental impact and greenness of analytical methods/ procedures at each stage, ii) popularization of the existing green chemistry metrics/tools and iii) new software/tool for easy evaluation of the greenness of various parameters of different processes on different scales.

References

  1. Anastas, P. T., & Warner, J. C. (1998)., Principles of green chemistry., Green chemistry: Theory and practice, 29, 14821-42.
  2. Williamson, T. C., & Anastas, P. T. (Eds.). (1998)., Green chemistry: Frontiers in benign chemical syntheses and processes., Oxford University Press.
  3. Mut Günzler, I. I., & Williams, A. (2001)., Handbook of analytical techniques., Evolution, 1, 1-2.
  4. Song J. & Han B. (2015)., Green chemistry: a tool for the sustainable development of the chemical industry., National Science Review, 2(3), 255-256. https://doi.org/10.1093/nsr/nwu076
  5. KARAGÖLGE, Z., & Bahri, G. Ü. R. (2016)., Sustainable chemistry: green chemistry., Journal of the Institute of Science and Technology, 6(2), 89-96. https://doi.org/10.21597/jist.2016218851
  6. Manahan, S. E. (2006)., Green Chemistry and the Ten Commandments of Sustainability 2nd Ed, Chem., Char Research, Inc. Publishers Columbia, Missouri U.S.A. p-347-363. ISBN: 0-9749522-4-9
  7. Wardencki, W., Curylo, J. and Namieœnik, J. (2005)., Green Chemistry - Current and Future Issues., Polish J. of Environ. Studies, 14(4), 389-395.
  8. Gałuszka, A., Migaszewski, Z., & Namiesnik, J. (2013)., The 12 principles of green analytical chemistry and the, Significance mnemonic of green analytical practices.
  9. Ivankovic, A., Dronjic, A., Bevanda, A. M., & Talic, S. (2017)., Review of 12 Principles of Green Chemistry in Practice., International J. of Sustainable and Green Energy, 6(3), 39-48.
  10. Keith, L.H., Gron, L.U. and Young, J. L. (2007)., Green Analytical Methodologies., Chem. Rev., 107(6), 2695−2708
  11. Tobiszewski, M., Mechlińska, A., & Namieśnik, J. (2010)., Green analytical chemistry—theory and practice., Chemical Society Reviews, 39(8), 2869-2878.
  12. Curyło, J., Wardencki, W., & Namieśnik, J. (2007)., Green Aspects of Sample Preparation--a Need for Solvent Reduction., Polish Journal of Environmental Studies, 16(1).
  13. Koel, M. & Kaljurand, M. (2006)., Application of the principles of green chemistry in analytical chemistry., Pure Appl. Chem., 78, 1993–2002. https://doi.org/10.1351/pac200678111993
  14. Guardia, M.D. and Garrigues, S. (2020)., Past, Present and Future of Green Analytical Chemistry., Green Chemistry Series No. 66 in Challenges in Green Analytical Chemistry: 2nd Edition Edited by Salvador Garrigues and Miguel de la Guardia The Royal Society of Chemistry.pp-1-18.
  15. Kaya, S.I., Cetinkaya, A., & Ozkan, S.A. (2022)., Green analytical chemistry approaches on environmental analysis., Trends in Environ. Anal. Chem. 33, e00157. https://doi.org/10.1016/ j.teac.2022.e00157
  16. Sankula, K., Kota, S. and Nissankarrao, S. (2014)., Supercritical Fluid Technology: Green Chemistry for the 21st Century., The Pharma Innovation Journal, 3(5), 19-24.
  17. Caputo, G., Fernandez, I.G., Saldana, M.D.A., & Galia, A. (2013)., Advances and Perspectives of Supercritical Fluid Technology., J. of Chem., 13, 1-3. http://dx.doi.org/10.1155/2013/243653
  18. Hayes, R., Warr, G.G., & Atkin, R. (2015)., Structure and Nanostructure in Ionic Liquids., Chem. Rev., 115, 6357–6426. https://doi.org/10.1021/cr500411q
  19. Jarosova, R., Wang, Y., Swain, G. M. and Blanchard, G. J. (2018)., Ionic Liquids. A Unique and Useful Class of Materials., Chem. Educator, 23, 265–272.
  20. Wilkes, J.S. (2002)., A short history of ionic liquids--from molten salts to neoteric solvents., Green Chem., 4, 73-80. https://doi.org/10.1039/B110838G
  21. Pham, T. P. T., Cho, C. W., & Yun, Y. S. (2010)., Environmental Fate and Toxicity of Ionic Liquids: A Review., Water Res., 44, 352−372. https://doi.org/10.1016/j.watres.2009.09.030
  22. Ho, T. D., Zhang, C., Hanto, L.W., & Anderson, J. L. (2014)., Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives., Anal. Chem., 86, 262−285.
  23. Pandey, S. (2006)., Analytical applications of room-temperature ionic liquids: A review of recent efforts., Analytica Chimica Acta, 556(1), 38-45. https://doi.org/10.1016/j.aca.2005.06.038
  24. Kharissova, O.V., Kharisov, B.I., Oliva González, C.M., Méndez, Y.P. & López, I. (2019)., Greener synthesis of chemical compounds and materials., R. Soc. Open Sci. 6, 191378. http://dx.doi.org/10.1098/rsos.191378
  25. Tobiszewski, M., Mechlinska, A., Zygmunt, B., & Namiesnik, J. (2009)., Green analytical chemistryin sample preparation for determination of trace organic pollutants., Trends in Anal. Chem., 28(8), 943.
  26. Polyakova, Y. and Row, K.H. (2007)., Analysis of linear regressions applied to water-methanol eluents modified with ionic liquid., J. Liq. Chromatogr. Related Technol., 30, 2557-2573.
  27. Liu, J. F., Jonsson, J. A. and Jiang, G. (2005)., Application of ionic liquids in analytical chemistry., TrAC, Trends Anal. Chem., 24, 20-27.
  28. Antonio, V. H., Javier, H., & Miguel, A. R. (2008)., Ionic liquids as mobile phase additives for the high performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples., Anal. Bioanal. Chem, 392, 1439-1446. https://doi.org/10.1007/s00216-008-2442-9
  29. Mandal, S., Swagata, M., Ghosh, S. K., Pintu Sar, Ghosh, A., Saha, R., & Saha, B. (2016)., A review on the advancement of ether synthesis from organic solvent to water., RSC Adv., 6, 69605–69614.
  30. Marsh, K. N., Boxall, J. A. & Lichtenthaler, R. (2004)., Room temperature ionic liquids and their mixtures, a review., Fluid Phase Equilibr., 219(1), 93-98. https://doi.org/10.1016/j.fluid.2004.02.003
  31. Villa, R., Alvarez, E., Porcar, R. Eduardo, G.V., Luis, S.V. & Lozano, P. (2019)., Ionic liquids as an enabling tool to integrate reaction and separation processes., Green Chem., 21, 6527.
  32. Phalke, P. and Kavade, S. (2013)., Review on Hyphenated Techniques., Internat. J. of Chem. Stud., 1(3), 157-165.
  33. Devi, T., Rani, T., & Pravalika, P. (2016)., A Review on Hyphenated Separation Techniques Used in Pharmaceutical Analysis., IOSR J. of Pharmacy and Biological Sci., 11, 65-74. DOI: 10.9790/3008-1106026574
  34. Patel, K. N., Patel, J. K., Patel, M. P., Rajput, G. C., & Patel, H. A. (2010)., Introduction to hyphenated techniques and their applications in pharmacy., Pharmaceutical methods, 1(1), 2-13.
  35. Kusch, P. (2012)., Pyrolysis-gas chromatography/mass spectrometry of polymeric materials., Advanced Gas Chromatography-Progress in Agricultural, Biomedical and Industrial Applications, Germany.
  36. Yuzawa, T., Watanabe, C., Nemoto, N., & Ohtani, H. (2013)., Rapid evaluation of photo, thermal and oxidative degradation of high impact polystyrene by a xenon lamp-based online ultraviolet irradiation-pyrolysis-GC/MS system., Polym. Degrad. and Stab., 98(2), 671–676. http://id.nii.ac.jp/1476/00005780/
  37. Michalski, R., Szopa, S., Jablonska, M. & Lyko, A. (2012)., Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium., The Scientific World J., Article ID 902464, 1-17.
  38. Wardencki, W. and Namiesnik, J. (2002)., Some Remarks on Gas Chromatographic Challenges in the Context of Green Analytical Chemistry., Polish J. of Environ. Studies, 11, 185-187.
  39. Korany, M.A., Mahgoub, H., Haggag, R.S., Ragab, M.A.A. & Elmallah, O. A. (2017)., Green chemistry: Analytical and chromatography., J. of Liq. Chromat. & Related Technol., 40(16), 839-852.
  40. Jain, A., Pillai, A.K.K.V., Sharma, N., & Verma, K. K. (2010)., Headspace single-drop microextraction and cuvetteless microspectrophotometry for the selective determination of free and total cyanide involving reaction with ninhydrin., Talanta, 82, 758-765.
  41. Sharma, N., Jain, A., Singh, V.K. & Verma, K. K. (2011)., Solid-phase extraction combined with headspace single-drop microextraction of chlorophenols as their methyl ethers and analysis by high-performance liquid chromatography-diode array detection., Talanta, 83, 994–999. https://doi.org/10.1016/j.talanta.2010.11.003
  42. Hakkarainen, M. (2010)., Multiple headspace single-drop micro-extraction for quantitative determination of lactide in thermally-oxidized polylactide., Polym. degrad. and stab., 95, 270-273.
  43. Sharma, N., Pillai, A.K.K.V., Pathak, N., Jain, A. & Verma, K.K. (2009)., Liquid-phase microextraction and fibre-optics-based cuvetteless CCD-array micro-spectrophotometry for trace analysis., Anal. Chim. Acta 648, 183–193.
  44. Prat, D., Haylera, J. and Wells, A. (2014)., A Survey of Solvent Selection Guides., Green Chem., 16, 4546-4551.
  45. Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., Kleine, H. P., Knight, C., Nagy, M.A., Perry, D.A., & Stefaniak, M. (2008)., Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation., Green Chem. 10, 31-36. https://doi.org/10.1039/B711717E
  46. Alder, C.M., Hayler, J.D., Henderson, R.K., Redman, A.M., Shukla, L., Shuster, L.E. & Sneddon, H.F. (2016)., Updating and further expanding GSK’s solvent sustainability guide., Green Chem., 18, 3879
  47. Adams, J. P., Alder, C. M., Andrews, I., Bullion, A. M., Campbell-Crawford, M., Darcy, M. G., ... & Walker, M. D. (2013)., Development of GSK, Green chemistry, 15(6), 1542-1549.
  48. Armenta, S., Garrigues, S., Guardia, M. D. & Turrillas, F.A.E. (2018)., Green Analytical Chemistry., Encyclopedia of Analytical Science, 3rd Edition, 1-3. https://doi.org/10.1016/B978-0-12-409547-2.13980-0
  49. Armenta, S., Garrigues, S., Turrillas, F.A.E, & Guardia, M.D. (2019)., Green extraction techniques in green analytical chemistry., Trends in Anal. Chem., 116, 248-253. https://doi.org/10.1016/j.trac.2019.03.016
  50. Tobiszewski, M. (2016)., Metrics for green analytical chemistry., Analytical methods, 8(15), 2993-2999.
  51. Tobiszewski, M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015)., Green chemistry metrics with special reference to green analytical chemistry., Molecules, 20(6), 10928-10946.
  52. Saroj, S, Shah, P., Jairaj, V. & Rathod, R.. (2018)., Green Analytical Chemistry and Quality by Design: A Combined approach towards Robust and Sustainable Modern Analysis., Current Anal. Chem., 14, 367 – 381. http://dx.doi.org/10.2174/1573411013666170615140836
  53. Martínez, J., Cortés, J.F., & Miranda, R. (2022)., Green Chemistry Metrics, A Review., Processes 10, 1274. https://doi.org/10.3390/pr10071274
  54. Derbenev, I. N., Dowden, J., Twycross, J., & Hirst, J. D. (2022)., Software tools for green and sustainable chemistry., Current Opinion in Green and Sustainable Chemistry, 100623.
  55. Sajid, M., & Płotka-Wasylka, J. (2022)., Green analytical chemistry metrics: A review., Talanta, 238, 123046. https://doi.org/10.1016/j.talanta.2021.123046
  56. Bryan, M. C., Dunn, P. J., Entwistle, D., Gallou, F., Koenig, S.G., Hayler, J.D., Hickey, M.R., Hughes, S., Kopach, M. E., Moine, G., Richardson, P., Roschangar, F., Steven, A., & Weiberth, F.J. (2018)., Key Green Chemistry research areas from a pharmaceutical manufacturers’ perspective revisited., Green Chemistry, 20(22), 5082-5103.
  57. Pena-Pereira, F., Lavilla, I. & Bendicho, C. (2021)., Greening sample preparation: An overview of cutting edge contributions., Curr. Opin. Green Sustain. Chem., 30, 100481. https://doi.org/10.1016/j.cogsc.2021.100481
  58. Billiard, K.M., Dershem, A.R., & Gionfriddo, E. (2020)., Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review., Molecules, 25(22), 5297. https://doi.org/10.3390/molecules25225297
  59. Carasek, E., Bernardi, G., Morelli, D., & Merib, J., (2021)., Sustainable green solvents for microextraction techniques: Recent developments and applications., J. Chromatography A 1640.
  60. Jayabun, S., Pathak, S., & Sengupta, A. (2021)., Analytical application of ionic liquid in determination of trace metallic constituents in U matrix by ICP-OES: A, Journal of Molecular Liquids, 343, 117584. https://doi.org/10.1016/j.molliq.2021.117584
  61. Mielko, K. A., Pudełko-Malik, N., Tarczewska, A., & Młynarz, P. (2021)., NMR spectroscopy as a “green analytical method” in metabolomics and proteomics studies., Sustainable Chemistry and Pharmacy, 22, 100474.
  62. Tantry, S., Tharpa, K., Kumar, A., Kumar, A., & Thimmappa, B. H. S. (2021)., Reagent Activated Cotton Fiber for Rapid Determination of Aldehydes in Diverse Matrices., Nature Environment & Pollution Technology, 20(3).
  63. Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V. (2019)., Metal-organic frameworks in green analytical chemistry., Separations, 6(3), 33.
  64. Madikizela, L. M., Tavengwa, N. T., Tutu, H., & Chimuka, L. (2018)., Green aspects in molecular imprinting technology: From design to environmental applications., Trends in Environmental Analytical Chemistry, 17, 14-22.