International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Quantum-chemical study of the coordination of some aromatic derivatives of semicarbazone

Author Affiliations

  • 1Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin
  • 2Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin
  • 3Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin
  • 4Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin

Res.J.chem.sci., Volume 13, Issue (2), Pages 15-22, June,18 (2023)

Abstract

Semicarbazone is a molecule having the R1R2C=N-NR3-C(=O)-NR4R5 general formula. The oxygen atom with its two free electron pairs in on hand, and each nitrogen atom with its one free electron pair in the other hand are potential coordination sites. The simplest molecule in this series is the semicarbazone which formula is H2C=N-NH-C(=O)NH2. Some semicarbazones, such as nitrofurazone, and some thiosemicarbazones are known to have many properties: antiviral, antibacterial, antitrypanosomal, anticonvulsant, antitumor, anticancer. They are usually mediated by an association with copper or iron. Indeed transition metal complexes with given chemical structures are useful alternatives in the treatment of certain diseases since coordination of active ingredients deeply modifies both the physiological properties of metals and ligands in the meaning of overall improvement of these properties. The present work focuses on quantum study of the complexation of some aromatic derivatives of semicarbazone. The purpose of this study is to determine the most favorable coordination site of each of these ligands. It was found that the oxygen atom appears more favorable to the coordination of the aromatic derivatives of semicarbazone. Complexes of these ligands with the Zn (II) were modeled. The calculations were made the DFT/B3LYP level with the 6-31G (d, p) orbital basis set.

References

  1. Esmaeili, L. (2019)., Complexes du cuivre avec applications biomédicales: syntheses, characterization et inclusion dans des films biocompatible., Unpublished doctoral dissertation, Montreal University, Quebec, Canada.
  2. Mangue, J. (2019)., Syntheses de complexes de cuivre bio-inspirés pour la réduction catalytique de l’oxyde nitreux et du dioxygène., Unpublished doctoral dissertation, Communaute Universite Grenoble Alpes, Grenoble, France.
  3. Henni, A. (2013)., Synthèses et Caractérisations des Ligands., Complexes de Zinc et Complexes de Zinc-Alcalino-terreux, mémoire de magister, Tlemcen, university Abou Bekr Belkaid, 7-38.
  4. Ebnou, F., Ebeid, K., M’ Haiham, M., Dhia, M. B. & Sanhourya, M. A. (2020)., Synthèse et caractérisation des complexes de cobalt (II) et de nickel (II) avec des ligands du type (R2N) 3P (E)(R2N= pipéridinyl ou morpholinyl; E= S ou Se)., Proceeding of the JIC2019, 2, 1-7.
  5. Allab, Y. (2020)., Préparation de complexe avec des métaux de transition stabilité, synthèse, activité et application., Doctoral dissertation.
  6. Büchel, K. H., Moretto, H. H., & Werner, D. (2008)., Industrial inorganic chemistry., John Wiley & Sons. https://doi.org/10.1002/9783527613328
  7. Bäuerlein Edmund & Arias Jose. Luis. (2007)., Handbook of biomineralization: biological aspects and structure formation., Eggshell Growth and Matrix Macromolecules, 309-327, Online ISBN: 9783527619443. https://doi.org/10.1002/9783527619443
  8. Bäuerlein, E., & Arias, J. L. (2007)., Biological aspects and structure formation., Wiley-Vch, 1(19), 331-347.
  9. Bäuerlein Edmund & Frankel Richard (2007)., Handbook of biomineralization: biological aspects and structure formation, Magnetic Microstructure of Magnetotactic Formation in Magnetospirilium., 126-144, Online ISBN: 9783527619443. https://doi.org/10.1002/9783527619443
  10. Andersen, O. (1999)., Principles and recent developments in chelation treatment of metal intoxication., Chem. Rev., 99(9), 2683–2710. https://doi.org/10.1021/cr980453a
  11. Wong, E. & Giandomenico, C. M. (1999)., Current status of platinum-based antitumor drugs., Chem. Rev., 99(9), 2451-2466. https://doi.org/10.1021/cr980420v
  12. Shaw, C. F. (1999)., Gold-based therapeutic agents., Chem. Rev., 99(9), 2589–2600.
  13. Caravan, P. & Ellison, J. J. (1999)., Gadolinium (III) chelates as MRI contrast agents:  structure, dynamics, and applications., Chem. Rev., 99(9), 2293–2352. https://doi.org/10.1021/cr980440x
  14. Picot, D. (2008)., Modelisation de la reaction d, Doctoral dissertation, Ecole Polytechnique X.
  15. Sakirigui, A., Sika, K. C., Koffi, A. E., Fatondji, R. H., Fagbohoun, L., Yovo, F., ... & Gbénou, J. D. (2021)., Comparative antimicrobial activity of Cymbopogon citratus essential oil and thiosemicarbazones derived from this oil., GSC Advanced Research and Reviews, 9(3), 064-092.
  16. Amani J. (2017)., Synthèse, Caractérisation et Activité biologique des complexes à base de thiosemicarbazone. Chimie inorganique., Unpublished doctoral dissertation, Université libannaise de Beyrouth, Université d
  17. Frisch, A. (2009)., Gaussian (version 09W) [software]., Gaussian Inc., Pittsbourgh PA.
  18. Gómez-Jeria, J. S. (2014)., D-Cent-QSAR (version 1) [software]., Santiago, Chile, 2014
  19. Mason, R. (1961)., The magnetic anisotropy and electron distribution in succinimide., Acta Crystallographica, 14(7), 720-724.
  20. Potapov Victor and Tatarintchik Sopia (1988)., Chimie organique., (Ed. Mir), Moscou, p 37
  21. Sakurai, H., Yoshikawa, Y., & Yasui, H. (2008)., Current state for the development of metallopharmaceutics and anti-diabetic metal complexes., Chemical Society Reviews, 37(11), 2383-2392.
  22. Kuevi, U. A., Kpotin, G. A., Atohoun, G. S., & Mensah, J. B. (2018)., Theoretical Study of the Coordination of Semicarbazone and Its Methylated Derivatives., International Journal of Chemistry, 10(1), 1.