International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Eco friendly synthesis method of AgNP nanoparticles from eletarria cardamomum husk extract and its antibacterial activities

Author Affiliations

  • 1Department of Chemistry, Agurchand Manmull Jain College, Affiliated to the University of Madras, Meenambakkam. Chennai-600061, India
  • 2Department of Chemistry, Agurchand Manmull Jain College, Affiliated to the University of Madras, Meenambakkam. Chennai-600061, India

Res.J.chem.sci., Volume 13, Issue (2), Pages 10-14, June,18 (2023)

Abstract

Silver nanoparticles were synthesised by many methods. Our focus of interest is green synthesise method. Elettaria cardamomum extract has the potential to reduce silver nitrate resulting in the formation of AgNPs. Various characterisation techniques used were UV-Vis spectroscopy, Infrared spectroscopy, scanning electron microscope, X-ray diffraction studies and particle size analyser. The morphology, size distribution, and crystalline nature were revealed by the above studies. Phytochemical analysis of the Elettaria cardamomum husk extract was done for the presence of natural products. Further studies confirmed its ability against gram +ve and gram -ve bacteria. The gram +ve bacteria like Bacillus subtilis, staphylococcus aureaus and gram - ve bacteria like Escherichia coli and proteus vulgaris.

References

  1. Luisi, P. L., Magid, L. J., & Fendler, J. H. (1986). Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. Critical Reviews in Biochemistry, 20(4), 409-474., undefined, undefined
  2. L. S. Nair and C. T. Laurencin,(2007) Silver Nanoparticles: Synthesis and Therapeutic Applications, Journal of Biomedical Nanotechnology, 3(4): 301-316, undefined, undefined
  3. Karnani, R. L., & Chowdhary, A. (2013). Biosynthesis of silver nanoparticle by eco-friendly method. Indian journal of Nanoscience, 1(1), 25-31., undefined, undefined
  4. Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262., undefined, undefined
  5. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874., undefined, undefined
  6. Preethi, K. C., Kuttan, G., & Kuttan, R. (2006). Antioxidant Potential of an Extract of Calendula officinalis. Flowers in Vitro. and in Vivo. Pharmaceutical biology, 44(9), 691-697., undefined, undefined
  7. Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development–a food industry perspective. Trends in Food Science & Technology, 17(10), 547-556., undefined, undefined
  8. Crozier, P. A., & Hansen, T. W. (2015). In situ and operando transmission electron microscopy of catalytic materials. Mrs Bulletin, 40(1), 38-45., undefined, undefined
  9. Gurunathan, S., Han, J. W., Kim, E. S., Park, J. H., & Kim, J. H. (2015). Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. International journal of nanomedicine, 2951-2969., undefined, undefined
  10. Crozier, P. A., & Hansen, T. W. (2015). In situ and operando transmission electron microscopy of catalytic materials. Mrs Bulletin, 40(1), 38-45. doi: 10.1557/mrs.2014.304. HDL: 2286/R.I.35693., undefined, undefined
  11. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface science, 145(1-2), 83-96. Doi: 10.1016/j.cis.2008.09.002., undefined, undefined
  12. Li, L. S., Hu, J., Yang, W., & Alivisatos, A. P. (2001). Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano letters, 1(7), 349-351. Doi:10.1021/n1015559r. 34, undefined, undefined
  13. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., ... & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335.Doi: 10.1016/j.colsurfb.2009.07.048., undefined, undefined
  14. de Aragão, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J. d. A. S., et al. (2019). Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab. J. Chem. 12, 4182–4188. doi:10.1016/j.arabjc.2016.04.014, undefined, undefined
  15. Escárcega-González, C. E., Garza-Cervantes, J. A., Vazquez-Rodríguez, A., Montelongo-Peralta, L. Z., Treviño-Gonzalez, M. T., Díaz Barriga Castro, E., ... & Morones-Ramirez, J. R. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International journal of nanomedicine, 2349-2363., undefined, undefined
  16. Gandhi, H., & Khan, S. (2016). Biological Synthesis of Silver Nanoparticles and Its Antibacterial Activity. Journal of Nanomedicine and Nanotechnology, 7(2), 1000366. doi:10.4172/2157-7439.1000366, undefined, undefined
  17. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 73(6), 1712-1720., undefined, undefined
  18. Sangaonkar, G. M., & Pawar, K. D. (2018). Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids and Surfaces B: Biointerfaces, 164, 210-217., undefined, undefined
  19. Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental science and pollution research, 23, 4489-4497., undefined, undefined
  20. Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abomughaid, M. M., Al Ali, A., ... & Dizge, N. (2022). Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials, 12(12), 2013., undefined, undefined
  21. Sharma, A., Sagar, A., Rana, J., & Rani, R. (2022). Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters, 10(1), 2., undefined, undefined
  22. Yassin, M. T., Mostafa, A. A. F., Al-Askar, A. A., & Al-Otibi, F. O. (2022). Facile green synthesis of silver nanoparticles using aqueous leaf extract of Origanum majorana with potential bioactivity against multidrug resistant bacterial strains. Crystals, 12(5), 603., undefined, undefined
  23. Asfere, Y., Kebede, A., & Zinabu, D. (2020). In-vitro antimicrobial activities and phytochemical screening of selected plant extracts against some medically and agriculturally important pathogens. European Journal of Medicinal Plants, 31(10), 167-189., undefined, undefined
  24. Atwaa, E. S. H., Shahein, M. R., Radwan, H. A., Mohammed, N. S., Aloraini, M. A., Albezrah, N. K. A., ... & Elmahallawy, E. K. (2022). Antimicrobial activity of some plant extracts and their applications in homemade tomato paste and pasteurized cow milk as natural preservatives. Fermentation, 8(9), 428. doi: 10.1080/07391102.2022.2130987, undefined, undefined
  25. Ads, E. N., Hassan, S. I., Rajendrasozhan, S., Hetta, M. H., Aly, S. H., & Ali, M. A. (2022). Isolation, structure elucidation and antimicrobial evaluation of natural pentacyclic triterpenoids and phytochemical investigation of different fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS analysis. Molecules, 27(6), 1805. doi: 10.3390/molecules27061805, undefined, undefined