International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Physicochemical study of a binary liquid mixture by ultrasonic speed, isentropic compressibility and acoustic impedance from 288.15-318.15K

Author Affiliations

  • 1Department of Chemistry, Janta College Bakewar (206124), Etawah, UP, India

Res.J.chem.sci., Volume 13, Issue (1), Pages 46-59, February,18 (2023)

Abstract

Ultrasonic study of intermolecular interactions between the solvents of different nature have been performed by ultrasonic speed (U), isentropic compressibility (βs) and acoustic impedance (Z). Ultrasonic speed and aforesaid acoustical parameters for binary liquid mixture of 2-butanol and dodecane were computed from 288.15-318.15K over the entire range of concentration and atmospheric pressure and compared with the literature values Paterson-Flory-Prigogine (PFP), Ramaswamy- Anbananthan (RS) and Glinski model (GLI) were used to study the intermolecular interactions between the poor interacting liquids at different temperatures. Standard deviations and numerical coefficients of mixing properties were estimated by Redlich Kister polynomial. McAllister multibody correlation model was used to correlate the experimental findings. Ramaswamy model deals a fair agreement with experimental values in comparison to statistical liquid state PFP model.

References

  1. Awasthi N. (2021)., Prediction of molecular interactions in binary system from 288.15 to 318.15K by ultrasonic speed and isentropic compressibility., Research Journal of Pharmaceutical, Biological and Chemical Sciences., 12(6), 27-19.
  2. Baluja, S., & Oza, S. (2001)., Studies of some acoustical properties in binary solutions., Fluid phase equilibria, 178(1-2), 233-238.
  3. Pandey J.D., Vyas V., Jain P., Dubey G. P., Tripathi N., & Dey R. (1999)., Speed of sound, viscosity and refractive index of multicomponent systems: theoretical predictions from the properties of pure components., Journal of molecular liquids., 81(2), 123-133.
  4. Nath, G., Sahu, S. & Paikaray, R. (2009)., Study of acoustic parameters of binary mixtures of a nonpolar liquid with polar liquid at different frequencies., Indian journal of physics, 83, 429-436.
  5. Deosarkar S.D., Tawde P.D., & Arsule A.D. (2021)., An Insight into the Molecular Interactions of Ranitidine Hydrochloride in Aqueous-Alcoholic Mixtures at Different Temperatures through Ultrasonic Velocity Study., Russian Journal of Physical Chemistry A.,95(13),2578-85.
  6. Duraivathi C., Priya J.J., Poongodi J. & Jeyakumar H. J. (2022)., Ultrasonic study of molecular interactions in organic liquid with CCl4 at different temperature., Materials Today: Proceedings, 49, 1968-72.
  7. Abe, A., & Flory, P. J. (1965)., The thermodynamic properties of mixtures of small, nonpolar molecules., Journal of the American Chemical Society, 87(9), 1838-1846.
  8. Flory, P. J., Orwoll, R. A., & Vrij, A. (1964)., Statistical thermodynamics of chain molecule liquids. II. Liquid mixtures of normal paraffin hydrocarbons., Journal of the American Chemical Society, 86(17), 3515-3520.
  9. Prigogine I and Ballemans. A (1957)., Method V. A. Molecular theory of solutions., Amsterdam: North –Holland Publ. Company.
  10. Prigogine, I., & Saraga, L. (1952)., Test of monolayer model for surface tension of simple liquid., J. chem. Phys, 49, 399-407.
  11. Flory P.D., (1965)., Statistical thermodynamics of liquid mixtures., Journal of the American Chemical Society, 87(9), 1833-1838.
  12. Patterson D. & Rastogi A.K. (1970)., The surface tension of polymeric liquids and the principle of corresponding states., J Phy Chem., 74, 1067-1071.
  13. Ramaswamy, K., & Anbananthan, D. (1981)., Original article unavailable, Information taken from Ref.[3]., Acustica, 48, 281-282.
  14. Gliński, J. (2003)., Determination of the conditional association constants from the sound velocity data in binary liquid mixtures., The Journal of chemical physics, 118(5), 2301-2307.
  15. McAllister, R. A. (1960)., The viscosity of liquid mixtures., AIChE Journal, 6(3), 427-431.
  16. Redlich, O., & Kister, A. T. (1948)., Algebraic representation of thermodynamic properties and the classification of solutions., Industrial & Engineering Chemistry, 40(2), 345-348.
  17. Troncoso, J., Valencia, J. L., Souto-Caride, M., González-Salgado, D., & Peleteiro, J. (2004)., Thermodynamic properties of dodecane+ 1-butanol and+ 2-butanol systems., Journal of Chemical & Engineering Data, 49(6), 1789-1793.
  18. Shukla, R. K., Kumar, A., Awasthi, N., Srivastava, U., & Srivastava, K. (2017)., Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol with benzene from various models at temperature range 298.15–313.15 K., Arabian Journal of Chemistry, 10(7), 895-905.
  19. Shukla, R. K., Awasthi, N., Kumar, A., Shukla, A., & Pandey, V. K. (2011)., Prediction of associational behaviour of binary liquid mixtures from viscosity data at 298.15, 303.15, 308.15 and 313.15 K., Journal of Molecular Liquids, 158(2), 131-138.
  20. Shukla, R. K., Kumar, A., Srivastava, U., Awasthi, N., & Pandey, J. D. (2012)., Estimation of the surface tensions of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol in mixtures with benzene by associated and non-associated processes at 298.15, 303.15 and 313.15 K., Journal of solution chemistry, 41, 1112-1132.
  21. Natarajan, R., & Ramesh, P. (2011)., Ultrasonic velocity determination in binary liquid mixtures., Journal of Pure Applied and Industrial Physics, 1(4), 212-277.
  22. Kiyohara, O., & Benson, G. C. (1979)., Ultrasonic speeds and isentropic compressibilities of n-alkanol+ n-heptane mixtures at 298.15 K., The Journal of Chemical Thermodynamics, 11(9), 861-873.
  23. Kumar, H., Kundi, V., Singla, M., & Sharma, S. (2013)., Mixing Properties of Binary Liquid Mixtures of Alkoxypropanols with Branched Alkanols at Different Temperatures., Bulletin of the Chemical Society of Japan, 86(12), 1435-1446.