International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Modeling and optimization of methyl violet 2B removal on activated carbon based neem hulls using Response Surface Methodology (RSM)

Author Affiliations

  • 1Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal
  • 2Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal and National Polytechnic Institute (INP), National School of Chemical and Technological Arts Engineers (ENSIACET, UMR 1010, Laboratory of Agro-Industrial Chemistry, BP 44362 - 31030 Toulouse Cedex 4, France
  • 3Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal and University of Sine Saloum El Hadji Ibrahima Niass (USSEIN), UFR, Fundamental and Engineering Sciences (UF-SFI), BP 55 Kaolack, Senegal
  • 4Amadou Makhtar MBOW University (UAM), B.P. 45 927 Dakar-Nafa-VDN, Dakar, Senegal

Res.J.chem.sci., Volume 13, Issue (1), Pages 35-45, February,18 (2023)

Abstract

The direct discharge of industrial effluents loaded with dyes into nature constitutes a major environmental pollution problem. Thus, the treatment of these wastewaters is now a necessity to protect of people and the environment. The aim of this study was to determine the optimal operating conditions of the adsorption removal of Methyl Violet (MV) in aqueous solution. The activated carbon adsorbent that used in this study is chemically prepared from neem seed hulls. The Surface Response Methodology (SRM), was used for the optimisation and modelling of the adsorption fixation process of MV on the prepared activated carbon elaborated adsorbent. The effects of the operating parameters such as the initial concentration of MV in the solution (40 - 80mg.L-1), the amount of activated carbon adsorbent (1-2g.L-1), the contact time (50-100 min) and the initial pH of the solution (4 - 8) have been studied. The results for ANOVA analysis has showed that the quadratic model is the best fitting model to describe the fixation of MV on the activated carbon the studied adsorbent. The results has also showed that the adsorption of MV on activated carbon the elaborated adsorbent is strongly influenced by the studied parameters. Indeed, the dose of an activated carbon gets the most significant effect on dye removal. The optimal conditions of MV adsorption correspond to an initial MV concentration of 40.75mg.g-1, an activated carbon dose of 1.78g.L-1, a pH of 4.06 and a adsorption time of 99.40 min and allow a MV removal yield of 99.53 %. Therefore, the MSR can be used to model the removal of MV as a function of the parameters studied and to determine the optimal operating conditions for MV fixation on neem seed shell activated carbon. This study has showed that an activated carbon based on neem hulls is a credible option for the treatment of industrial effluents loaded with dyes.

References

  1. Parmar, P.; Shukla, A.; Goswami, D.; Patel, B. and Saraf, M. (2020)., Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design., Chemical Engineering Journal Advances, 4, 100043.
  2. Machrouhia, A.; Farnanea, M.; Tounsadib, H.; Kadmic, Y.; Favierd, L.; Qourzale, S.; Abdennouria, M. and Barkaa, N. (2019)., Activated carbon from Thapsia transtagana stems: central composite design (CCD) optimization of the preparation conditions and efficient dyes removal., Health, 4(6).
  3. Mehr, H.; Saffari, J.; Mohammadi, S. and Shojaei, S. (2020)., The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model., International Journal of Environmental Science and Technology, 17(3), 1773-1782.
  4. Machrouhi, A.; Alilou, H.; Farnane, M.; El Hamidi, S.; Sadiq, M.; Abdennouri, M.; Tounsadi, H. and Barka, N. (2019)., Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design., Journal of Science: Advanced Materials and Devices 19, 4(4), 544-553.
  5. Foroutan, R.; Peighambardoust, S. J.; Aghdasinia, H.; Mohammadi, R. and Ramavandi, B. (2020)., Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids., Environmental Science and Pollution Research, 27(35), 44218-44229.
  6. Sivarajasekar, N.; Mohanraj, N.; Sivamani, S. and Moorthy, G. I. (2017)., Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass., Journal of Environment & Biotechnology Research, 6(1), 88-95.
  7. Bonetto, L.; Ferrarini, F.; De Marco, C.; Crespo, J.; Guégan, R. and Giovanela, M. (2015)., Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent., Journal of Water Process Engineering, 6, 11-20.
  8. Gadekar, M. R. and Ahammed, M. M. (2019)., Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach., Journal of environmental management, 231, 241-248.
  9. Dao, M. U.; Le, H. S.; Hoang, H. Y.; Tran, V. A.; Doan, V. D.; Le, T. T. N. and Sirotkin, A. (2021)., Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties., Environmental Research, 198, 110481.
  10. Piaskowski, K.; Świderska-Dąbrowska, R. and Zarzycki, P. K. (2018)., Dye removal from water and wastewater using various physical, chemical, and biological processes., Journal of AOAC International, 101(5), 1371-1384.
  11. Mozumder, M. and Islam, M. (2021)., Development of treatment technology for dye containing industrial wastewater., Journal of Scientific Research, 2(3), 567-567.
  12. Maiti, S. and Prasad, B. (2020)., Minocha, A. K., Optimization of copper removal from wastewater by fly ash using central composite design of Response surface methodology., SN Applied Sciences, 2(12), 1-14.
  13. Atheba, P. and Drogui, P. (2018)., Trokourey, A., Adsorption kinetics and thermodynamics study of butylparaben on activated carbon coconut based., Journal of Encapsulation and Adsorption Sciences, 8(2), 39.
  14. Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z. N.; Lawan, I.; Wang, L. and Yuan, Z. (2021)., Adsorption of organic dyes from wastewater by metal-doped porous carbon materials., Journal of Cleaner Production, 284, 124773.
  15. Laskar, N. and Kumar, U. (2018)., Adsorption of Safranin (Cationic) dye from water by Bambusa tulda: Characterization and ANN modeling., Environmental Engineering Science, 35(12), 1361-1375.
  16. Wu, J.; Wang, T.; Wang, J.; Zhang, Y. and Pan, W.P. (2021)., A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity., Science of the Total Environment, 754, 142150.
  17. Ahsaine, H. A.; Anfar, Z.; Zbair, M.; Ezahri, M. and El Alem, N. (2022)., Adsorptive removal of methylene blue and crystal violet onto micro-mesoporous Zr3O/activated carbon composite: a joint experimental and statistical modeling considerations., Journal of Chemistry, 1-14.
  18. Shah, K. & Palmer, A. (2018)., Physico-chemical characteristics of Activated Carbon prepared from coconut shell., Int. J. Latest Eng. Res. Appl, 3(1), 27-31.
  19. Aicha, G. (2020)., Elimination de nickel (II) par un charbon activé à base le noix de l’abricot.,
  20. Rahman, M. A.; Amin, S. R. and Alam, A. S. (2012)., Removal of methylene blue from waste water using activated carbon prepared from rice husk., Dhaka University Journal of Science, 60(2), 185-189.
  21. El Naga, A. O. A.; El Saied, M.; Shaban, S. A. and El Kady, F. Y. (2019)., Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon., Journal of Molecular Liquids, 285, 9-19.
  22. Hammari, A. M.; Abubakar, H.; Misau, M.; Aroke, U. and Hamza, U. (2020)., Adsorption Equilibrium and Kinetic Studies of Methylene Blue Dye Using Groundnut Shell and Sorghum Husk Biosorbent., Journal of Environmental Bioremediation and Toxicology, 3(2), 32-39.
  23. Andas, J. and Satar, N. A. A. (2018)., Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study., Materials Today: Proceedings, 5(9), 17611-17617.
  24. Faye, M. (2010)., Nouveau procédé de fractionnement de la graine de Neem (Azadirachta Indica A. Jussi) sénégalais: production d,
  25. Okeola, O.; Odebunmi, E. and Ameen, O. (2012)., Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat., Bulletin of the Chemical Society of Ethiopia, 26(2).
  26. Mamane, O. S.; Boukari, M. S. D.; Chaibou, A. R.; Yacouba, M. M.; Alma, M. and Natatou, I. (2018)., Valorisation de coques de noix de Balanites aegyptiaca (L.) Del. et élimination du Chrome en solution., Afrique Science,14(3), 167-181.
  27. Gueye, M. (2015)., Développement de charbon actif a partir de biomasses lignocellulosiques pour des applications dans le traitement de l,
  28. Vunain, E. and Biswick, T. (2019)., Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from Malawian baobab fruit shell wastes: Equilibrium, kinetics and thermodynamic studies., Separation Science and Technology, 54(1), 27-41.
  29. Kwaghger, A. and Ibrahim, J. (2013)., Optimization of conditions for the preparation of activated carbon from mango nuts using HCl., American Journal of Engineering Research, 2(7), 74-85.
  30. Das, D. and Das, N. (2015)., Optimization of parameters for praseodymium (III) biosorption onto biowaste materials using response surface methodology: equilibrium, kinetic and regeneration studies., Ecological engineering, 81, 321-327.
  31. Ramakrishna, G. and Susmita, M. (2012)., Application of response surface methodology for optimization of Cr (III) and Cr (VI) adsorption on commercial activated carbons., Research Journal of Chemical Sciences.
  32. Pavan Kumar, G.; Malla, K. A. and Yerra, B. (2019)., Srinivasa Rao, K., Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks., Applied Water Science, 9(3), 1-9.
  33. Kouotou, D.; Manga, H. N.; Baçaoui, A.; Yaacoubi, A. and Mbadcam, J. K. (2013)., Optimization of activated carbons prepared by and steam activation of oil palm shells., Journal of Chemistry.
  34. Yasin, Y. (2013)., Mohamad, M.; Ahmad, F. B., The application of response surface methodology for lead ion removal from aqueous solution using intercalated tartrate-Mg-Al layered double hydroxides., International Journal of Chemical Engineering.
  35. Gebresemati, M.; Gabbiye, N. and Sahu, O. (2017)., Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology., Journal of applied research and Technology, 15(1), 27-35.
  36. Das, R.; Mukherjee, A.; Sinha, I.; Roy, K. and Dutta, B. K. (2020)., Synthesis of potential bio-adsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies., Applied Water Science, 10(5), 1-18.
  37. Singh, R. and Bhateria, R. (2020)., Optimization and Experimental Design of the Pb2+ Adsorption Process on a Nano-Fe3O4-Based Adsorbent Using the Response Surface Methodology., ACS omega, 5(43), 28305-28318.
  38. Mohammad, Y.; Shaibu-Imodagbe, E.; Igboro, S.; Giwa, A. and Okuofu, C. (2014)., Modeling and optimization for production of rice husk activated carbon and adsorption of phenol., Journal of Engineering.
  39. Javanbakht, V. and Ghoreishi, S. M. (20217)., Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite., Adsorption Science & Technology, 35(1-2), 241-260.
  40. Brahmi, L.; Kaouah, F.; Boumaza, S. and Trari, M. (2019)., Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones., Applied Water Science, 9(8), 1-13.
  41. Almahbashi, N.; Kutty, S.; Ayoub, M.; Noor, A.; Salihi, I.; Al-Nini, A.; Jagaba, A.; Aldhawi, B.; Ghaleb, A. (2021)., Optimization of preparation conditions of sewage sludge based activated carbon., Ain Shams Engineering Journal, 12(2), 1175-1182.
  42. Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M. and Taitai, A. (2017)., Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite., Arabian Journal of Chemistry, 10, S3292-S3302.
  43. Nojavan, A. and Gharbani, P. (2017)., Response surface methodology for optimizing adsorption process parameters of reactive blue 21 onto modified Kaolin., Adv Environ Technol, 2, 89-98.
  44. Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y. and Li, C. (2010)., Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis., Desalination, 252(1-3), 149-156.
  45. Wakkel, M.; Khiari, B.; Zagrouba, F. (2019)., Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies., Environmental Science and Pollution Research, 26(19), 18942-18960.
  46. Isam, M.; Baloo, L.; Kutty, S. R. M. and Yavari, S. (2019)., Optimisation and modelling of Pb (II) and Cu (II) biosorption onto red algae (gracilaria changii) by using Response Surface Methodology., Water, 11(11), 2325.