International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Optimization indigo carmine removal by biosorption materials from agriculture waste

Author Affiliations

  • 1Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22
  • 2The Thermodynamics and Environmental Physico-Chemistry Laboratory, University NanguiAbrogoua (UNA), 02 BP 801 Abidjan 02, Côte d’Ivoire and Laboratory of Industrial Processes of Synthesis, Environment and New Energies Laboratory (LAPISEN) Félix HOUPHOUËT BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire
  • 3Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22
  • 4Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22
  • 5Laboratory of Industrial Processes of Synthesis, Environment and New Energies Laboratory (LAPISEN) Félix HOUPHOUËT BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire
  • 6Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22
  • 7National Institute of Scientific Research (INRS Water, Earth and Environment), Université du Québec, 490 rue de la Couronne, Québec City, Canada

Res.J.chem.sci., Volume 12, Issue (2), Pages 62-72, June,18 (2022)

Abstract

The optimization of indigo carmine removal on biosorbents by Hadamard and full factorial design designs was the subject of this study. The biosorbents used were prepared from cassava tuber peels and ripe banana peels, considered as agricultural waste in Côte d´Ivoire. The effect of six parameters (pH of the solution, mass of the biosorbent "banana peel or cassava peel", granulometry, concentration of the solution, stirring time and stirring speed) was studied to establish the optimal conditions for the removal of the indigo carmine dye. A Hadamard design established as a first approach, showed that only three parameters, namely: the mass of the biosorbent (cassava peel), the concentration of the solution and the stirring speed, had an influence on the response. The results of the second design, the full factorial design, showed that the removal rate of the indigo carmine increased with increasing mass of the biosorbent. The maximum removal rate obtained was 96.80% when 5.00mg/L of indigo carmine solution was contacted with 1.20g of the biosorbent obtained from cassava peel, 2.00mm particle size, at a stirring speed of 250rpm for 60 minutes.

References

  1. Ma’arfi, F., Khan, M.Y., Husain, A., Khanam, A. and Hasan, Z. (2021)., Chapter 9 - Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1, Contamination of Water., pp. 123-141. Academic Press. ISBN 978-0-12-824058-8.
  2. Tripathi, G., Husain, A., Ahmad, S., Hasan, Z. and Farooqui, A. (2021)., Chapter 6 - Contamination of water resources in industrial zones, Contamination of Water., pp. 85‑98. Academic Press. ISBN: 978-0-12-824058-8.
  3. Lee, C.-K., Low, K.-S. and Chung, L.-C. (1997)., Removal of Some Organic Dyes by Hexane-Extracted Spent Bleaching Earth., Journal of Chemical Technology & Biotechnology, 69(1), 93-99. https://doi.org/10.1002/(SICI) 1097-4660(199705)69:1.
  4. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. and Polonio, J.C. (2019)., Effects of textile dyes on health and the environment and bioremediation potential of living organisms., Biotechnology Research and Innovation, 3(2), 275‑290. https://doi.org/10.1016/j.biori.2019.09.001.
  5. Manceau, A., Marcus, M. and Tamura, N. (2002)., Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques., Reviews in Mineralogy & Geochemistry, 49, 341‑428. https://doi.org/10.2138/gsrmg.49.1.341.
  6. Hnatiuc, E. (2002)., Procédés électriques de mesure et de traitement des polluants., Tec & Doc Lavoisier, https://www.lavoisier.fr/livre/environnement/procedes-electriques-de-mesure-et-de-traitement-des-polluants/hnatiuc/descriptif-9782743005788.
  7. Acka, T.L. (2020)., Utilisation de plan d’expérience dans l’élimination du remazol black par du charbon actif., Master, Université Félix Houphouët Boigny de Cocody (Côte d’Ivoire).
  8. Qu, R., Xu, B., Meng, L., Wang, L. and Wang, Z. (2015)., Ozonation of indigo enhanced by carboxylated carbon nanotubes: Performance optimization, degradation products, reaction mechanism and toxicity evaluation., Water Research, 68, 316-327. https://doi.org/10.1016/ j.watres.2014.10.017.
  9. Ramesh, T.N., Kirana, D.V., Ashwini, A. and Manasa, T.R. (2017)., Calcium hydroxide as low-cost adsorbent for the effective removal of indigo carmine dye in water., Journal of Saudi Chemical Society, 2(21), 165-171. https://doi.org/10.1016/j.jscs.2015.03.001.
  10. Reilly, M., Cooley, A.P., Tito, D., Tassou, S.A. and Theodorou, M.K. (2019)., Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters., Energy Procedia, 161, 343-351. https://doi.org/10.1016/j. egypro.2019.02.106.
  11. Bernal, M., Romero, R., Roa, G., Barrera-Díaz, C., Torres-Blancas, T. and Natividad, R. (2013)., Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay., International Journal of Photoenergy, 2013, 1–7. https://doi.org/10. 1155/2013/918025.
  12. Li, H.-X., Xu, B., Tang, L., Zhang, J.-H. and Mao, Z.-G. (2015)., Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10., International Biodeterioration & Biodegradation, 103, 30-37. https://doi.org/10.1016/ j.ibiod.2015.04.007.
  13. Gopi, S., Balakrishnan, P., Pius, A.and Thomas, S. (2017)., Chitinnanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine., Carbohydrate Polymers, 165, 115-122. https://doi.org/10.1016/j.carbpol.2017.02.046.
  14. Gemeay, A.H., Elsharkawy, R.G. and Aboelfetoh, E.F. (2018)., Graphene Oxide/Polyaniline/Manganese Oxide Ternary Nanocomposites, Facile Synthesis, Characterization, and Application for Indigo Carmine Removal., Journal of Polymers and the Environment, 26(2), 655-669. https://doi.org/10.1007/s10924-017-0947-z.
  15. Zaouak, A., Noomen, A. and Jelassi, H. (2018)., Gamma-radiation induced decolorization and degradation on aqueous solutions of Indigo Carmine dye, Journal of Radioanalytical and Nuclear Chemistry, 317, 37-48. https://doi.org/10.1007/s10967-018-5835-z.
  16. Eroi, S.N., Ello, A.S., Diabaté, D. and Ossonon, D.B. (2021)., Heterogeneous WO3/H2O2 system for degradation of Indigo Carmin dye from aqueous solution., South African Journal of Chemical Engineering, 37, 53-60. https://doi.org/10.1016/j.sajce.2021.03.009.
  17. Capra, L., Manolache, M., Ion, I., Stoica, R., Stinga, G., Doncea, S.M., and Ion, A.C. (2018)., Adsorption of Sb (III) on Oxidized Exfoliated Graphite Nanoplatelets., Nanomaterials (Basel), 8(12), 992. https://doi.org/ 10.3390/nano8120992.
  18. Crini, G., Lichtfouse, E., Wilson, L. and Morin-Crini, N. (2018)., Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment., Green Adsorbents for Pollutant Removal,18, 23-71. https://doi.org/10.1007/978-3-319-92111-2_2.
  19. Konan, A. T. S., Richard, R., Andriantsiferana, C., Yao, K. B. and Manero, M.-H. (2019)., Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewate., Desalination and Water Treatment, 163, 336–346.
  20. Jiwalak, N., Rattanaphani, S., Bremner, J. and Rattanaphani, V. (2010)., Equilibrium and kinetic modeling of the adsorption of indigo carmine onto silk., Faculty of Science - Papers (Archive), 11(4), 572-579. https://doi.org/10.1007/s12221-010-0572-2.
  21. Konan, A. T. S., Richard, R., Andriantsiferana, C. and Yao, K. B. (2020)., Recovery of borassus palm tree and bamboo waste into activated carbon: application to the phenolic compound removal., Journal of Materials and Environmental Science, 11(10), 1584-1598.
  22. Konan, K.G. (2015)., Elimination du Crystal violet par biosorption : application aux peaux de manioc et de banane (Master option chimie et environnement)., Université Nangui Abrogoua, Abidjan (Côte d’Ivoire).
  23. Mayeko, A., Vesituluta, P., Phanzu, J., Muanda, D., Bakambo, G., Lopaka, B. and Mulangala, J. (2012)., Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l’acide phosphorique., International Journal of Biological and Chemical Sciences, 6(3), 1337-1359. https://doi.org/10.4314/ijbcs.v6i3.36.
  24. Adedeji, O. (2019)., Nigéria : faire des déchets de manioc une richesse dans la stratégie d’atténuation du changement climatique., https://www.cta.int/fr/blog/all/article/nigeria-faire-des-dechets-de-manioc-une-richesse-dans-la-strategie-d-attenuation-du-changement-climatique-sid0011dd15d-fd72-49e9-8b21-70800f55c781.
  25. FAO (2014)., Lutter contre le changement climatique grâce à l’élevage – Une évaluation des émissions et des opportunités d’atténuation au niveau mondial., Rome.
  26. Vernier, P., N’Zué, B. and Zakhia-Rozis, N. (2018)., Le manioc, entre culture alimentaire et filière agro-industrielle., éditions Quae. https://doi.org/10.35690/978-2-7592-2708-2.
  27. N’Zué, B., Zohouri, P.G. and Sangaré, A. (2004)., Performances agronomiques de quelques variétés de manioc (Manihot esculenta Crantz) dans trois zones agroclimatiques de la Côte d’Ivoire., Agronomie Africaine, 16(2), 1-7.
  28. Thiémélé, D.E.F., Traoré, S., Aby, N., Gnonhouri, P., Yao, N., Kobenan, K., and Zakra, N. (2017)., Diversité et sélection participative de variétés locales productives de banane plantain de Côte d’Ivoire., Journal of Applied Biosciences, 114, 11324-11335. https://doi.org/10.4314/ jab.v114i1.6.
  29. Kwa, M., & Temple, L. (2019)., Le bananier plantain. Enjeux socio-économiques et techniques, expériences en Afrique intertropicale., Ed. Quae. https://spore.cta.int/fr/ publications/all/issue/le-bananier-plantain-un-potentiel-a-mieux-valoriser-sid051a55ffb-488a-44f4-a74d-019b7d1e0 468.
  30. Liade, J. (2021)., Yakro Côte-d’Ivoire : Vente de peaux de manioc, un autre business des commerçantes d’attiéké., https://www.connectionivoirienne.net/2021/04/12/magazine-yakro-cote-divoire-vente-de-peaux-de-manioc-un-autre-business-des-commercantes-dattieke.
  31. Guezzen, B., Rasmal, H.N. and Kermane, Z. (2017)., Modification de la bentonite par l’hexadecyltrimethyl ammonium application à l’adsorption du l’indigo carmine., Master, Université Dr. Moulay Tahar Saïda (Algérie).
  32. Palma-Goyes, R.E., Silva-Agredo, J., González, I. and Torres-Palma, R.A. (2014)., Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes., Electrochimica Acta, 140, 427-433. https://doi.org/10.1016/j.electacta.2014.06.096.
  33. Zhang, H., Zhu, J., Chen, Q., Jiang, S., Zhang, Y. and Fu, T. (2018)., New intelligent photometric titration system and its method for constructing chemical oxygen demand based on micro-flow injection., Microchemical Journal, 143, 292-304. https://doi.org/10.1016/j.microc.2018.08.009.
  34. Debina, B., Eric, S.N., Fotio, D., Arnaud, K.T., Lemankreo, D.-Y. and Rahman, A.N. (2020)., Adsorption of Indigo Carmine Dye by Composite Activated Carbons Prepared from Plastic Waste (PET) and Banana Pseudo Stem., Journal of Materials Science and Chemical Engineering, 8(12), 39-55. https://doi.org/10.4236/msce.2020.812004.
  35. Ano, J., Assémian, A.S., Yobouet, Y.A., Adouby, K. and Drogui, P. (2019)., Electrochemical removal of phosphate from synthetic effluent: A comparative study between iron and aluminum by using experimental design methodology., Process Safety and Environmental Protection, 129, 184-195. https://doi.org/10.1016/j.psep.2019.07.003.
  36. France. Feinberg, M. (1996)., Valorisation of methods of analysis, a chemometric approach to quality assurance in the laboratory., https://ulysse.univ-lorraine.fr/discovery/ fulldisplay/alma991001105659705596/33UDL_INST:UDL.
  37. Ano, J., Henri Briton, B.G., Kouassi, K.E. and Adouby, K. (2020)., Nitrate removal by electrocoagulation process using experimental design methodology: A techno-economic optimization., Journal of Environmental Chemical Engineering, 8(5), 104292. https://doi.org/ 10.1016/j.jece.2020.104292.
  38. Alahiane, S., Qourzal, S., Ouardi, M.E., Belmouden, M., Assabbane, A. and Ait-Ichou, Y. (2013)., Adsorption and photocatalytic degradation of indigo carmine dye in aqueous solutions using TiO2/UV/O2., Journal of Materials and Environmental Science, 4(2), 239-250.
  39. Odogu, A.N., Daouda, K., Desiré, B.B.P., Nsami, N.J. and Mbadcam, K.J. (2016)., Removal of indigo carmine dye (IC) by batch adsorption method onto dried cola nut shells and its active carbon from aqueous medium., International Journal of Engineering Sciences & Research Technology, 5(3), 874-887. https://doi.org/10.5281/zenodo.48382.
  40. Aboua, K.N. (2013)., Optimisation par le plan factoriel complet des conditions de production de charbon actif et son utilisation pour l’élimination de colorants et métaux lourds en solutions aqueuses (Thèse)., Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire.
  41. Berkane, M. (2014)., Elimination d’un colorant Carmin Indigo en solution aqueuse par double hydroxyde lamellaire., Master, http://e-biblio.univ-mosta.dz/handle/ 123456789/8317.
  42. M. Kadja, A. Zaatri, Z. Nemouchi, R. Bessaih, S. Benissaad and K. Talbi (Eds), (2016)., Elimination d’un colorant acide en milieu aqueux, par un procédé d’oxydation chimique catalysée par un polyoxometallate de type Dawson.