International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Kinetics of Aquation of Hexakis (Urea) Chromium (III) Chloride

Author Affiliations

  • 1Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria
  • 2Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria
  • 3Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria
  • 4Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria

Res.J.chem.sci., Volume 12, Issue (2), Pages 25-31, June,18 (2022)

Abstract

Chromium hexaurea complex was synthesized and characterized by two different spectroscopic techniques. The UV-Vis spectra showed a maximum absorbance at 290nm while IR spectra showed v(C=N) stretching vibration in the free urea occurred at 1681cm-1 but shifted down to 1633cm-1in the complex a change of 48cm-1 indicating a bonding to nitrogen, The kinetics of the aquation of Hexakis (urea) chromium (III) chloride complex has been shown to follow first order kinetics with average rate constant kobs (25oC, 40oC and 50oC) to be 2.5×10-2, 3.04×10-2 and 3.3×10-2 respectively and the corresponding activation parameters of ∆H*= +5.19kJK-1, ∆S* = -258JK-1 and ∆G*25=82.25kJK-1, ∆G*40=85.62kJK-1, ∆G*50=88.199kJK-1indicative associative mechanism.

References

  1. Ptáček, P., Opravil, T. and Šoukal, F. (2018)., Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton., BoD–Books on Demand.
  2. Seoud, A. L. A., & Abdallah, L. A. (2010)., Two optimization methods to determine the rate constants of a complex chemical reaction using FORTRAN and MATLAB., American Journal of Applied Sciences, 7(4), 509.
  3. Barraza-Burgos, J. M., García-Saavedra, E. A., Chaves-Sanchez, D., Trujillo-Uribe, M. P., Velasco-Charria, F. J., & Acuña-Polanco, J. J. (2015)., Thermogravimetric characteristics and kinetics of pyrolysis of coal blends., Revista Facultad de Ingeniería Universidad de Antioquia, (77), 17-24.
  4. Breiner, Pfeiffer and Malet (1924). J. Chim. Phys. 21, 25., undefined, undefined
  5. Laidler, K. J., & Glasstone, S. (1948)., Rate, order and molecularity in chemical kinetics., Journal of Chemical Education, 25(7), 383.
  6. Jerry, M. (1992)., Advanced Organic Chemistry: reactions., Mechanisms and Structure.
  7. James E. H. (2002)., Chemical Kinetics and Reaction Mechanisms., 2nd ed., McGraw-Hill, Deduction of Reaction Mechanisms, 156-160. ISBN 0-07-288362-6.
  8. Morrison R. T. and Boyd R. N. (1983)., Organic Chemistry., 4th ed., Allyn and Bacon, 216-9 and 228-231. ISBN 0-205-05838-8.
  9. Petrou. A. Vrachnou-Astra. E, and Katakis, D. (1980)., A new series of organochromium complexes formed in aqueous solutions., Inorganica Chimica Acta, 39, 161–171.
  10. Atkins P. and De Paula J. (2006)., Physical Chemistry., 8th ed., W.H. Freeman, 816-8. ISBN 0-7167-8759-8.
  11. Moore J. W. and. Pearson R. G. (1981)., Kinetics and Mechanism., 3rd ed., John Wiley. 276-8. ISBN 0-471-03558-0
  12. Petrou A. L. (1993)., Kinetics and mechanism of the reaction between chromium (II) and 1, 2-bis (2-pyridyl) ethylene in acidic aqueous solutions., Journal of the Chemical Society, Dalton Transactions, (24), 3771-3775.
  13. Vincent, J. B. (2003)., Recent advances in the biochemistry of chromium (III)., The Journal of Trace Elements in Experimental Medicine, 16(4), 227-236.