International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Geochemistry of termite mounds in the sediment-hosted lead-zinc mining District of Yolo, Gongola sub-basin: A guide for lead-zinc exploration in the Upper Benue Trough, Nigeria

Author Affiliations

  • 1Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria
  • 2Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria
  • 3Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria

Res.J.chem.sci., Volume 12, Issue (2), Pages 10-20, June,18 (2022)

Abstract

Yolo lead-zinc mining district is an important area in Gongola Sub-basin of the Upper Benue Trough with paucity of rocks outcrops but abundant termite mounds. The termite mounds and their adjoining surface soils were analysed for Pb, Zn, Ti, Cu, Sb, As, U, Cr, Zr, and Li in an attempt to test their effectiveness in defining favorable areas for lead-Zinc mineralization in the Upper Benue Trough. The result shows general low elements content in both the termite mounds and adjoining soils, but with a clear trend of elevated concentration in termite mounds relative to their adjoining surface soils. The ore elements Pb, Zn together with Ti have the highest average concentrations of 503 ppb, 2136.5 ppb, and 6285 ppb in termite mounds compared to 356 ppb, 1662 ppb and 2250 ppb respectively in adjoining surface soils. Biological Absorption Coefficient (BAC), calculated to evaluate their degree of concentration, shows 141 values of Biological Absorption Coefficient within enrichment category with only 59 values in the depletion category. Although the values for elemental concentrations are generally low, the elevated concentration of the ore elements Pb, Zn and the associated trace elements in termite mounds relative to their adjoining soils, and the clustering of BAC values in the enrichment category together suggest that Pb, Zn and Ti in termite mounds can give an insight into favorable areas for lead-Zinc exploration in the Upper Benue Trough.

References

  1. Burgers, A. (Ed.). (2012)., Soil biology., Elsevier.
  2. Black H.I.J. and Okwakol M.J.N. (1997)., Agricultural intensification, soil biodiversity and agroecosystem functions in the tropics: The role of termites., Appl. Soil Ecology, (6), 37-53.
  3. Jungerius P.D.V., Ancker J.A.M. and Mucher H.J. (1999)., The contribution of termites to microgranular structure of soils on the Uasin Gishu Plateau, Kenya., Catena, (34), 349-363 (1999).
  4. Genise J.F. (1997)., A fossil termite nest from the Marpiatom stage (late Pliocene) of Argentina; Paleoclimatic indicator., Paleogeo. Paleoclim. Paleoecology, (136), 139-144.
  5. Alveti N., Reginald S., Kumar K.S., Harinath V. and Sreedhar B. (2012)., Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India., Environ. Monit Assess, (184), 2295-2306.
  6. Prasad E.A.V., Jayarama G. M., Raghu V. and Dunn C.E. (1987)., Significance of termite mounds in gold exploration., Curr. Sci., (56), 1219-1222.
  7. Raghu V. (2007)., Termite mound as a bioindicator for the exploration of barite in the area around Vemula Mine, Kadapa District, Andhra Pradesh., Indian Journal of Geochemistry, 22(1), 45-56.
  8. Haruna, I. V., Ahmed, H. A., & Suleiman, B. M. (2021)., Geochemistry of termite mounds in the sediment-hosted Lead-Zinc Mining District of Yolo, Gongola Sub-basin: A guide for lead-zinc exploration in the Upper Benue Trough, Nigeria., Journal of Geology and Mining Research, 13(1), 1-10.
  9. Watson J.P. (1970)., Contribution of termites to development of Zinc anomalies in Kalahari sand., Trans. Inst. Min. Metall., (79B), B53-B59.
  10. Grant N.K. (1971)., The South Atlantic Benue Trough and Gulf of Guinea Cretaceous triple junction., Geol. Soc. Amer. Bull., (82), 2295-2298.
  11. Benkhelil J. and Robineau B., Le fosse de la Benoue est-il un rift? Bull. Centres Recherches Expl. Prod. Elf-Aquitaine, (7), 315-321., undefined, undefined
  12. Maurin J.C., Benkhelil J. and Robineau B. (1985)., Fault rocks of the Kaltungo Lineament (northeastern Nigeria) and their relationship with the Benue Trough., J. Geol. Soc. London, (143), 587-599.
  13. Benkhelil J. (1986)., Structure et évolution geodynamique du basin intercontinental de la Bénoué (Nigeria): Thése de Doctorat d’Etat., Université de Nice, 226.
  14. Popoff, M. (1990)., Deformation intracontinental gondwanienne—Rifting mesozoique en Afrique (Evolution meso-cenozoique du fosse de la Benue, Nigeria)—Relations de lıocean Atlantique sud, Doctoral dissertation, These de Etat, University Aix-Marseillea III.
  15. Fairhead, J. D., & Binks, R. M. (1991)., Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system., Tectonophysics, 187(1-3), 191-203.
  16. Zaborski, P. M. (1998)., The cretaceous system in Nigeria., Africa Geoscience Review, 5, 385-484.
  17. Maluski, H., Coulon, C., Popoff, M. T., & Baudin, P. (1995)., 40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria., Journal of the Geological Society, 152(2), 311-326.
  18. Report (1975)., Federal Surveys, Nigeria., Futuk Sheet 172 S.E, edition 1.
  19. Carter, J. D. (1963)., The geology of parts of Adamawa, Bauchi and Bornu Provinces in northeastern Nigeria., Geological Survey of Nigeria Bulletin, 30.
  20. Offodile M. E. (1976)., A review of the geology of the Cretaceous of the Benue Valley., In: Kogbe, C.A., ed., Geology of Nigeria. Elizabethan Publ. Co. Lagos. Pp. 319-330.
  21. Benkhelil J. (1989)., The origin and evaluation of the Cretaceous Benue Trough (Nigeria)., Journal African Earth Sciences, (8), 251-282.
  22. Zaborski P. M. (1997)., Guide to the Cretaceous System in the Upper Part of the Upper Benue Trough, North-eastern Nigeria., African Geosciences Review, 10(1&2), 1322.
  23. Tukur A., Samaila N. K., Grimes S. T., Kariya I. I. and Chaanda M. S. (2015)., Two member subdivision of the Bima Sandstone, Upper Benue Trough: Based on sedimentological data., Journal of African Earth Sciences, (104), 140-158.
  24. Akande S.O., Ojo J.O., Erdtmann B.D., and Hetenyi M.,, Paleoenvironments, source rock potentials and thermal maturity of the Upper Benue rift basins, Nigeria: Implications for hydrocarbon exploration., Org. Geochem., 00(0), 1-12.
  25. Farrington J. L. (1952)., A preliminary description of the Nigerian lead-zinc fields., Econ. Geol., (47), 583-608.
  26. Orajaka, S. (1965)., The geology of the Enyigba. Ameri and Ameka lead-zinc lodes, Abakaliki division, Eastern Nigeria-a reconnaissance., J. Nig. Min. Geol. Mot. Soc, 2(2), 66-70.
  27. Nwachukwu S.O. (1975)., Temperature of formation in vein minerals in the southern portion of the Benue Trough, Nigeria., Jour. Min. Geol., (11), 45-55.
  28. Reyment R.A. (1965)., Aspect of geology of Nigeria: A review of Nigeria metallic minerals for technological development., Nat. Res., 8.
  29. Orajaka S. (1972)., Salt water resources of East Central State of Nigeria., J. Min. Geol., (3), 49-51.
  30. Olade M. A. (1976)., On the genesis of lead-znic deposits in Nigeria Benue rift (aulacogen): A re-interpretation., Jour. of Min. Geol., (13), 20-27.
  31. Olade M. A. and Morton R.D. (1985)., Origin of lead zinc mineralization in the southern Benue Trough, Nigeria, fluid inclusion and trace element studies., Mineralium Deposita, (20), 76-80.
  32. Goodfellow W.D., Lydon J.W. and Turner R.J.W. (1993)., Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits., In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., eds., Mineral deposits modeling geological Association of Canada, Special Paper, (40), 201-251.
  33. Krauskopf K.B. (1976)., Introduction to Geochemistry., Mc Graw-Hill, New York, 72.
  34. Beus A.A. and Grigorian S.V. (1977)., Geochemical Exploration Methods for Mineral Deposits., Applied Publishing Ltd., USA, 31-270.