International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Iron oxide based catalysts: a temperature programmed reduction study

Author Affiliations

  • 1Analytical Sciences, T&I, SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India
  • 2Olefins Platform, SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India

Res.J.chem.sci., Volume 11, Issue (3), Pages 39-45, October,18 (2021)

Abstract

Reduction process of iron oxides using hydrogen is a complex phenomena which needs to be understood properly to know about role of various phases of iron oxide in the functioning of catalyst. A detailed Temperature Programmed Reduction (TPR) study of iron oxide based catalyst has been reported here. Apart from fundamental behavior in terms of phase transformation as a result of reduction, the effect of various parameters like preparation methods, use of iron precursors, promoters and additives have also been studied in the present study. The reduction was found to be a multistage and stepwise process depending strongly on various factors like catalyst preparation method, iron precursor and presence of additives. This H2-TPR study further showed that, when Fe was more than 45%, reduction happened to be a three stage process (hematite Fe2O3 → magnetite Fe3O4 → wustite FeO →Fe), however when Fe is less than 30% it reduces through a two stage process (Fe2O3 → Fe3O4 → Fe). Also it was found that interaction of alumina (10%) with iron can make it possible to have reduction route through metastable FeO. However, with increasing Al content, alumina interacted strongly with iron oxide and resulted in the formation of spinel phase which was not easy to reduce. The presence of K and Mg in the catalyst shifted reduction towards high temperature.

References

  1. Jozwiak, W.K., Kaczmarek, E., Maniecki, T.P., Ignaczak W., & Maniukiewicz W. (2007)., Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres., Appl. Catal. A: Gen., 326(1), 17–27. https:// doi: 10. 1016/j.apcata.2007.03.021.
  2. Ndlela, S.C. and Shanks, B.H. (2003)., Reducibility of Potassium-Promoted Iron Oxide Under Hydrogen Conditions., Ind. Eng. Chem. Res., 42(10), 2112-2121.
  3. Messi, C., Carniti, P., & Gervasini, A. (2008)., Kinetics of Reduction of Supported Nanoparticles of Iron Oxide., J. Therm. Anal. Cal., 91(1), 93-100.
  4. Lin, H.Y., Chen, Y.W., & Li, C. (2003)., The Mechanism of Reduction of Iron Oxide by Hydrogen., Thermochim. Acta, 400(1-2), 61- 67.
  5. Fakeeha, A.H., Ibrahim, A.A., Naeem, M.A., Khan, W.U., Abasaeed, A.E., Alotaibi, R.L., & Al-Fatesh, A.S. (2015)., Methane Decomposition Over Fe Supported Catalysts for Hydrogen and Nano Carbon Yield., Catal. Sustain. Energy, 2(1), 71-82. https://DOI10.1515/cse-2015-0005.
  6. Jeong, M.H., Lee, D.H., & Bae, J.W. (2015)., Reduction and Oxidation Kinetics of Different Phases of Iron Oxides., Int. J. Hydrogen Energy, 40(6), 2613. http://dx.doi.org/ 10.1016/j.ijhydene.2014.12.099.
  7. Li, K., Haneda, M., & Ozawa, M. (2012)., The Synthesis of Iron Oxides with Different Phases or Exposure Crystal Planes and Their Catalytic Property for Propene Oxidation., Adv. Mater. Res., 463-464,189-193. https://doi: 10.4028/www.scientific.net/AMR.463-464.189.
  8. Farias, F. E. M., Rabelo Neto, R. C., Baldanza, M. A. S., Schmal, M., & Fernandes, F. A. N. (2011)., Effect of K Promoter on The Structure and Catalytic Behavior of Supported Iron-Based Catalysts in Fischer–Tropsch Synthesis., Brazilian J. Chem. Engg., 28(3), 495-504.
  9. Vulic T. J., Reitzmann, A. F. K., & Lázár, K. (2012)., Thermally Activated Iron Containing Layered Double Hydroxides as Potential Catalyst for N2O Abatement., Chem. Eng. J., 207-208, 913–922. http://dx.doi.org/10. 1016/j.cej.2012.06.152.
  10. Al-Fatesh, A.S., Fakeeha, A.H., Ibrahim, A.A., Khan, W.U., Atia, H., Eckelt, R., Seshan, K., & Chowdhury, B. (2018)., Decomposition of Methane over Alumina Supported Fe and Ni–Fe Bimetallic Catalyst: Effect of Preparation Procedure and Calcination Temperature., J. of Saudi Chem. Soc., 22(2), 239-247. http://dx.doi.org/10. 1016/j.jscs.2016.05.001.
  11. Wieczorek-Ciurowa, K. and Kozak, A.J. (1999)., The Thermal Decomposition of Fe(NO3)3.9H2O., J. Therm. Anal. Cal., 58(3), 647-651.
  12. Wei, X., Zhou, Y., Li,Y., & Shen, W. (2015)., Polymorphous Transformation of Rod-Shaped Iron Oxides and Their Catalytic Properties in Selective Reduction of NO by NH3., RSC Adv., 5, 66141. https://DOI:10.1039/ c5ra08254d
  13. Lübbe, M., Gigler, A. M., Stark, R.W., & Moritz, W. (2010)., Identification of Iron Oxide Phases in Thin Films Grown on Al2O3 (0001) by Raman Spectroscopy and X-Ray Diffraction., Surf. Sci., 604(7-8), 679-685. https:// doi:10.1016/j.susc.2010.01.015
  14. Hanesch, M. (2009)., Raman Spectroscopy of Iron Oxides and (Oxy) Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies., Geophys., J. Int., 177(3), 941–948. https://doi:10.1111/ j.1365-246X.2009.04122.x
  15. Bhatia, S., Beltramini, J, & Do, D. D. (1990)., Temperature Programmed Analysis and its Applications in Catalytic Systems., Catal. Tod., 7(3), 309.
  16. Boaro, M., Vicario, M., Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2003)., The Use of Temperature Programmed and Dynamic/Transient Methods in Catalysis: Characterization of Ceria-Based, Model Three-Way Catalysts., Catal. Tod. 77(4), 407-417. https://doi.org/10. 1016/S0920-5861(02)00383-8
  17. Che, M., & Védrine, J. C. (2012)., Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity. John Wiley & Sons., Ist edn. Wiley-VCH Verlag Gmb H & Co. KGaA, pp 747-852.
  18. Jin, Y., & Datye, A.K. (2000)., Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature-Programmed Reduction., J. Catal., 196, 8–17.
  19. Antonella Gervasini (2013)., Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods, Calorimetry and Thermal Methods in Catalysis., Springer-Verlag Berlin Heidelberg, pp 175-195. http://DOI:10.1007/978-3-642-119 54-5_5
  20. Wimmers, O. J., Arnoldy, P., & Moulijn, J.A. (1986)., Determination of the Reduction Mechanism by Temperature- Programmed Reduction: Application to Small Fe2O3 Particles., J. Phys. Chem., 90(7), 1331-1337. https://doi.org/10.1021/j100398a025
  21. Wan, H.J., Wu, B.S., Zhang, C.H., Xiang, H.W., Li, Y.W., Xu, B.F., & Yi, F. (2007)., Study on Fe-Al2O3 Interaction over Precipitated Iron Catalyst for Fischer-Tropsch Synthesis., Catal. Commun., 8(10), 1538-1545. http://doi: 10.1016/j.catcom.2007.01.002
  22. Nicholas, W.H., Stephen, J.G., Alan, J., & Brian, D. M. (1982)., Temperature Programmed Reduction., Catal. Rev. Sci. Eng., 24(2), 233-309. http://DOI:10.1080/0360245820 8079654
  23. Thomé, A.G., Peters, S., & Roessner, F. (2017)., iTPR - A New Methodical Approach for Temperature Programmed Reduction of Catalysts with Improved Sensitivity., Catal. Communs., 97, 10-13. http://dx.doi.org/10.1016/j.catcom. 2017.04.011
  24. Einemann, M., Neumann, F., Thomé, A.G., Wabo, S.G., & Roessner, F. (2020)., Quantitative Study of the Oxidation State of Iron-Based Catalysts by Inverse Temperature-Programmed Reduction and Its Consequences for Catalyst Activation and Performance in Fischer-Tropsch Reaction., Appl Catal A, Gen., 602, 117718. https://doi.org/10.1016/ j.apcata.2020.117718
  25. Jozwiak, W., Maniecki, T., Mierczynski, P., Bawolak, K., & Maniukiewicz, W. (2009)., Reduction Study of Iron- Alumina Binary Oxide Fe2-xAlxO3., Pol. J. Chem., 83(12), 2153-2162.
  26. Gao, X., Shen J., Hsia, Y., & Chen, Y. (1993)., Reduction of Supported Iron Oxide Studied by Temperature- Programmed Reduction Combined With Mossbauer Spectroscopy and X-Ray Diffraction., J. Chem. Soc. Faraday Trans., 89(7), 1079-1084. https://doi.org/ 10.1039/FT9938901079
  27. Parkinson, G.S. (2016)., Iron Oxide Surfaces., Surface Science Reports, 71(1), 272–365. http://dx.doi.org/ 10.1016/ j.surfrep.2016.02.001
  28. Kock, A.J.H.M., Fortuin, H.M., & Geus, J.W. (1985)., The Reduction Behavior of Supported Iron Catalysts in Hydrogen or Carbon Monoxide Atmospheres., J. Catal., 96(1), 261-275. https://doi.org/10.1016/0021-9517(85)903 79-3.
  29. Yuan, T.R., Su, Z., Chengyu, W., Dongbai, L., & Liwu, L. (1987)., An in Situ Combined Temperature Programmed Reduction-Mössbauer Spectroscopy of Alumina-Supported Iron Catalysts., J. Catal., 106(2), 440-448. https://doi.org/ 10.1016/0021-9517(87)90256-9
  30. Kumar, A.&Malvi, B. (2019)., Temperature Program Reduction (TPR) Study of Iron Oxide Based Catalysts., Proceedings from Indian Analytical Congress IAC-2019.N. Delhi, India, 12th-14th Dec. pp165.
  31. Wan, H., Wu, B., Zhang, C., Xiang, H., & Li, Y. (2008)., Promotional Effects of Cu and K on Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis., J. Mol. Catal. A: Chem., 283(1-2),33-42
  32. Yang, J., Sun, Y., Tang, Y., Liu, Y., Wang, H., Tian, L., Wang H., Zhang, Z., Xiang, H., & Li, Y. (2006)., Effect of Magnesium Promoter on Iron-Based Catalyst for Fischer–Tropsch Synthesis., J. Mol. Catal. A: Chem., 245(1-2), 26–36
  33. Rajesh, M., Minh, D.P., & Nzihou, A. (2018)., Effect of support and its surface modifications in cobalt-based Fischer-Tropsch synthesis: Review., Ind. Eng. Chem. Res., Am. Chem. Soc., 57(48), 16137-16161.
  34. Kishan, G., Lee, M.W., Nam, S.S., Choi, M.J., & Lee, K.W. (1998)., The Catalytic Conversion of CO2 to Hydrocarbons Over Fe–K Supported on Al2O3–MgO Mixed Oxides., Catal. Lett., 56(4), 215-219. https://doi.org/10.1023/A:1019089919614