International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Ionospheric Plasma Drift and Neutral Winds Modeling

Author Affiliations

  • 1 Patan Multiple Campus, Patan Dhoka, Lalitpur, Tribhuvan University, Nepal

Res. J. Physical Sci., Volume 4, Issue (7), Pages 5-10, September,4 (2016)

Abstract

This study reports the modeling results of the ionospheric plasma drift zonal velocity and the neutral wind motions. To determine zonal plasma drift velocity, we use theoretical formulations for ionospheric vertical electric field responsible for the development of the zonal plasma drift velocity. We obtain the modeling results of the neutral wind motions using the Horizontal wind models (HWM093 and HWM07). The computed drift velocity is also compared with the experimental results of neutral winds motions measured by the Febry Perot Interferometer. In addition, the equatorial plasma bubbles (EPBs) velocities as measured by OI airglow optical imaging system are also used to compare with the model results of ionospheric plasma drifts and neutral wind motions. Results show that trend of variations of model results of plasma drift velocity and local wind motions are similar, while the magnitude of EPBs drifts velocity most often shows quiet different values. Furthermore, the model results for the plasma drift velocity and the neutral wind motions obtained from HWM93 illustrate good agreement with the experimental results of neutral winds and EPBs velocity as compared with the model results derived from HWM07.

References

  1. Fejer B.G., J.R. Souza, A.S. Santos and A.E. Costa Pereira (2005)., Climatology of F region zonal plasma drifts over Jicamarca., J. Geophysics. Res., 110, A12310, doi:10.1029/2005JA011324.
  2. Chapagain N.P. (2015)., Electrodynamics of the Low-latitude Thermosphere by Comparison of Zonal Neutral Winds and Equatorial Plasma Bubble Velocity., Journal of Institute of Science and Technology, Tribhuvan University, 20(2), 84-89.
  3. de Paula E.R. et al (2002)., Ionospheric irregularity zonal velocities over Cachoeira Paulista., J. Atmos. Sol.–Terr. Phys., 64(12), 1511-1516.
  4. Pautet P.D., M.J. Taylor, N.P. Chapagain, H. Takahashi, A.F. Medeiros, F.T. Sao Sabbas and D.C. Fritts (2009)., Simultaneous observations of equatorial F–region plasma depletions over Brazil during the spread F Experiment (SpreadFEx)., Ann. Geophys., 27, 2371-2381.
  5. Chapagain N.P., M.J. Taylor, J.J. Makela and T.M. Duly (2012)., Equatorial plasma bubble zonal velocity using 630.0 nm airglow observations and plasma drift modeling over Ascension Island., J. Geophys. Res., 117, A06316, doi: 10.1029/2012 JA 017750.
  6. Haerendel, G., J.V. Eccles and S. Cakir. (1992)., Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow., J. Geophys. Res., 97(A2), 1209-1223, doi: 10.1029/91JA02226.
  7. Richmond A.D, E.C. Ridley and R.G. Roble. (1992)., A Thermosphere/Ionosphere general circulation model with coupled electrodynamics., Geophys. Res. Lett., 9, 601-604.
  8. Chapagain N.P., M.J. Taylor and J.V. Eccles. (2011)., Airglow observations and modeling of F region depletion zonal velocities over Christmas Island., J. Geophys. Res., 116, A02301, doi: 10.1029/2010JA015958.
  9. Chapagain N.P., J.J. Makela, J.W. Meriwether, D.J. Fisher, R.A. Buriti and A.F. Medeiros. (2012)., Comparison of Nighttime Zonal Neutral Winds and Equatorial Plasma Bubble Drift Velocities over Brazil., J. Geophys. Res., 117, A06309. doi: 10. 1029/2012JA017620.
  10. Fejer B.G., E.R. de Paula, S.A. Gonzalez and R.F. Woodman (1991)., Average vertical and zonal F region plasma drifts over Jicamarca., J. Geophys. Res., 96(A8), 13, 901-13, 906, doi: 10.1029/91JA01171.
  11. Meriwether JW, J.J. Makela, Y. Huang, D.J. Fisher, R.A. Buriti, A.F. Medeiros and H Takahashi (2011)., Climatology of the nighttime equatorial thermospheric winds and temperatures over Brazil near solar minimum., J. Geophys Res, 116, A04322, doi: 10.1029/2011JA016477.
  12. Rishbeth H. (1971)., Polarization fields produced by winds in the equatorial F-region., Planet. Space Sci., 19, 357-369.
  13. Heelis R.A., P.C. Kendall, R.J. Moffet, D.W. Windle and H. Rishbeth (1974)., Electrical coupling of the E and F-regions and its effect on the F-region drifts and winds., Planet. Space Sci., 22, 743-756.
  14. Immel T.J., H.U. Frey, S.B. Mende and E. Sagawa (2004)., Global observations of the zonal drifts speed of equatorial ionospheric plasma bubbles., Ann. Geophys., 22, 3099-3107.
  15. Rishbeth H. (1997)., The ionospheric E-layer and F-layer dynamos -a tutorial review., Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1873-1880.
  16. Hedin A., E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J. Frasier, T. Tsuda, F. Vial and R.A. Vincent. (1996)., Empirical wind model for the upper, middle and lower atmosphere., J. Atmos. Terr. Phys., 58, 1421-1447.
  17. Drob D.P. et al. (2008)., An empirical model of the Earth’s horizontal wind fields: HWM07., J. Geophys. Res., 113, A12304, doi: 10.1029/2008JA013668.
  18. Kelley M.C. (2009)., The Earth, Academic Press, San Diego, California.
  19. Eccles J.V. (1998)., A simple model of low-latitude electric fields., J. Geophys. Res., 103(A11), 26699-26708.
  20. Eccles J.V., N. Maynard and G. Wilson. (1999)., Study of the evening plasma drift vortex in the low-latitude ionosphere using, undefined
  21. San Marco electric field measurements., J. Geophys. Res., 104(A12), 28133-28143., undefined
  22. Sobral J. H. A. et al. (2009)., Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: experimental observations and theoretical validations., J. Geophys. Res., 114, A04309, doi: 10.1029/2008JA013896.
  23. Picone J.M., A.E. Hedin, D.P. Drob and A.C. Aikin. (2002)., NRLMSISE–00 empirical model of the atmosphere: Statistical comparisons and scientific issues., J. Geophys. Res., 107(A12), 1468, doi: 10.1029/2002JA009430.
  24. Bilitza D. et. al. (1990)., International Reference Ionosphere., NSSDC 90-22, Greenbelt, Maryland.
  25. Bilitza D. and B. Reinisch (2008)., International Reference Ionosphere 2007: Improvements and new parameters., J. Adv. Space Res., 42(4), 599-609, doi:10.10166/j.asr.2007 .07.048.
  26. Scherliess L. and B. G. Fejer (1999)., Radar and satellite global equatorial F–region vertical drift model., J. Geophys. Res., 104, 6829-6842.