

Research Journal of Physical Sciences Vol. 4(2), 1-7, March (2016)

Evaluation of Natural Radioactivity Levels in Soil Samples from Eastern and Northern Regions of South Kordofan State, Sudan

Amna M. Hassan^{1,2}, Abdelrahman E. MohamedOsman^{2,3}, Mustafa M. O. Ahamed⁴, Hajo Idriss^{4,5}, Mohammed A. Eltahir⁴ and Nserdin A. Ragab⁴

¹Physics Department, College of Sciences and Arts in Al-Namas (Female), University of Bisha, Kingdom of Saudi Arabia, Saudi Arabia ²Physics Department, Faculty of Sciences, Sudan University of Sciences and Technology, Sudan

³Physics Department, Faculty of sciences, Taibah University, Al-Medina Al-Munawarah, Kingdom of Saudi Arabia, Saudi Arabia ⁴Sudan Atomic Energy Commission, P.O. Box 3001, Khartoum, Sudan

⁵Committee on Radiation and Environmental Pollution Protection, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi

Arabia, Saudi Arabia

amnamahadi_11@yahoo.com

Available online at: www.isca.in, www.isca.me

Received 12th January 2016, revised 24th February 2016, accepted 3rd March 2016

Abstract

The current research is to assess the natural radioactivity level in the soil samples around eastern and northern regions of South Kordofan State. The radioactivity concentration of 238 U, 232 Th, and 40 K have been determined using γ -ray spectroscopy equipped with NaI (Tl) detector, the absorbed dose rate and annual effective dose were assessed. The activity concentration of 238 U, 232 Th and 40 K was 15.44 to 868.24, 7.12 to 406.61 and 226.67 to 2168.52Bqkg⁻¹ with average value of 108.82, 98.03 and 1059.13Bqkg⁻¹, respectively. The average values of obtained results were found to be higher than UNSCEAR reported data. The absorbed dose rate and annual effective dose were determined and found to be in range of 23.87 to 586.06nGyh⁻¹ and 29.29 to 719.23 μ Svy⁻¹ with average value of 153.65nGyh⁻¹ and 188.56 μ Svy⁻¹, respectively. The previous analysis has resulted that significant correlation was found between 232 Th and 40 K (P>0.01), while no correlation was found between 232 Th and 40 K to the overall absorbed dose in air discovered that the main contribution comes from 232 Th 38.54 %.

Keywords: Natural radioactivity, Soil, South Kordofan State, NaI (Tl) detector.

Introduction

There is a significant interest in the investigation of natural radioactivity in soil due to the people to natural radioactivity at different levels exposure. Natural environmental radioactivity has caused to the performance of comprehensive studies in many states world over¹. These researches can be profitable for both the estimation of public dose rates and the achievement of epidemiological investigations, as well as to establish main reference for data records, in order to a certain probable changes in the environmental factors. Natural radionuclides have been in existence in the environment since the formation of earth due to the long half-lives of radionuclides such as Uranium and Thorium series and their decay products together with ⁴⁰K. These radionuclides have different sources, including earth crust, several environmental samples, minerals and air. Investigation and evaluation of natural radioactivity in soil have been conducted indifferent areas of the globe, of ten estimation of the dose and risk resulting²⁻⁷. Radioactivity radionuclides that represent a potential risk to human health due to the emission of ionizing radiation⁸⁻⁹. Environmental radioactivity is widely distributed in the earth's environment¹⁰. The objective of the current research it to estimation radioactivity concentration in soil samplefrom eastern and northern regions of South Kordofan State, Sudan.

Materials and Methods

Study area: The research area was located in the South Kordofan State and lies between latitudes $29^{\circ}.32^{\setminus} - 31^{\circ}.49^{\setminus}$ E, and longitudes $11^{\circ}.47^{\setminus} - 12^{\circ}.08^{\setminus}$ N.

Geological information of study area: The main topographical in the South Kordofan State are mountains known as Nuba Mountains' series. They are metamorphosed quartzofeldspathic younger granite rocks. Consist of compound rocks covered by unfolded sediments. The series belong to the alkaline postorgonic (Figure-2)¹¹.

Sample collection and preparation: Sixty nine soil samples were taken from different locations around eastern and northern regions of South Kordofan State. At each sampling point, grass and trees leaves removed from the top of the soil surface before the soil was collected, using stainless steel sampler 15cma depth from the ground surface to get natural soil. Sampling locations were determined using GPS. The sample sizes were homogenized by passing through a 2mm test sieve. Samples were sealed in a 500 ml Marinelli beakers and left about 30 days to reach secular equilibrium between ²³⁸U and ²³²Th and their daughters.

Figure-1 Map shows the sampling location

Figure-2 Geological map of study area

Sample measurements: The activity level of radionuclide ²³⁸U, ²³²Th and ⁴⁰K in soil samples were determined by γ spectrometry equipped with NaI (Tl) detector. The samples were counted for three hours. Sample spectra were analyzed using winTMCA32 software package (provided by IAEA).²³⁸U was determined via progeny photo peaks:²¹⁴ Bi (609 Kev) and ²¹⁴Pb (352 Kev). ²³²Th was analyzed through its progeny photo peak ²¹²Pb (238 Kev). The 1460 Kev gamma transition was used to determine⁴⁰K concentration.

The activity concentration of radionuclide in soil samples were identified using Equation (1):

$$A_{c} (Bq/kg) = \frac{C_{n}}{P \gamma M \varepsilon}$$
(1)

Where: A_c is the activity distribution for element in the sample determined by Bqkg⁻¹ C_n is the net count rate under the corresponding peak, $P\gamma$ is the absolute transition probability of the specific γ -ray, M is the mass of the sample (kg) and ε is the detector efficiency at the specific γ -ray energy.

Dose Calculation: The absorbed dose rate D $(nGyh^{-1})$ was determined from²³⁸U, ²³²Th and ⁴⁰K activity concentration using UNSCEAR dose rate conversion factor (0.462) for ²³⁸U, (0.604) for ²³²Th, and (0.0417) for ⁴⁰KnGy h⁻¹ per Bqkg⁻¹ ¹². The absorbed dose rate was calculated using equation (2), and the annual effective dose Equation (3)

$$D(nGyh^{-1}) = A x \text{ dose rate conversion factor } (nGyh^{-1} \text{ per } Bqkg^{-1}) (2)$$

Where: D absorbed dose rate, and A activity concentration in $BqKg^{-1}$

The annual effective dose rate in air H (μ Svy⁻¹)was calculated using the conversion formula:

$$H = D(nGy / h) \times 24h \times 365.25d \times 0.2 \times 0.7 SvGy^{-1} \times 10^{-3}$$
(3)

Where: 0.7 SvGy^{-1} is the conversion coefficient from absorbed dose in air to effective dose received by an individual, and 0.2 is the outdoor occupancy factor¹.

Results and Discussion

Table-1 shows that findings of activity level for radionuclide²³⁸U, ²³²Th and ⁴⁰K in soil samples from eastern and northern regions of South Kordofan State. The level ²³⁸U, ²³²Th and ⁴⁰K ranged from 15.44 to 868.24, 7.12 to 406.61and 226.67 to 2168.52BqKg⁻¹ with average value of 108.82, 98.03and 1059.13BqKg⁻¹, respectively. The average level ²³⁸U, ²³²Th and ⁴⁰K are higher than international data 35, 30 and 400 Bqkg⁻¹, respectively published by UNSCEAR 2000. Themain factor influencing the level of terrestrial radionuclide in soil is the corresponding concentration in the soil forming rocks. Table-1 and figure 3to 5, it is clear that highest value of ²³⁸U was recorded in location S39, while the highest values of ²³²Th and ⁴⁰K were recorded in location S6.

Table-2 shows Pearson Correlation Coefficient Test for activity concentration (Bqkg⁻¹) of ²³⁸U, ²³²Th and ⁴⁰K in soil samples from study area. The regression analysis has shown that significant correlation (P>0.01) was found between ²³²Th and each of ²³⁸U and ⁴⁰K (0.423 and 0.611) respectively, while no significant correlation was found between ²³⁸U and ⁴⁰K.

The absorbed dose rate ranged from 23.87 to 586.06 nGyh⁻¹ with average value of 153.65 nGyh⁻¹, the corresponding annual effective dose was be 29.29 to 719.23 μ Svy⁻¹ with average value of 188.56 μ Svy⁻¹ as shown in table-3. Due to UNSCEAR 2000 indicate, the dose rate from terrestrial gamma rays in normal conditions are approximately 57nGyh⁻¹, while the global rate annual effective dose is 70 μ Svy⁻¹, from obtained results in study area the absorbed dose rate and annual effective dose are exceed the normal level the reason could be geological features.

Figure-6 shows the main contribution to absorbed dose rate in air derived from ²³²Th (38.54%). From different geographical regions in Sudan such as Jabel Mun200 nGyh^{-1 13} and Sinnar 38.80nGyh^{-1 14}. Also in other Countries, Turkey 67nGyh^{-1 10} and Cyprus 14.7 nGyh⁻¹¹⁵.

Descriptive Statistical summary	of 0, finally Ractivity conce	In anons (Dyrig) in son san	ipies South Koruoran State
Parameter	²³⁸ U	²³² Th	⁴⁰ K
Average	108.82	98.03	1059.13
Standard Deviation	112.35	97.39	610.11
Minimum	14.55	7.12	226.67
Maximum	868.24	406.61	2168.52

 Table-1

 Descriptive Statistical summary of ²³⁸U, ²³²Th and ⁴⁰ Kactivity concentrations (BqKg⁻¹) in soil samples South Kordofan State

Te	ւլ	- 1
_ I a	DI	e-2

Pearson Correlation Coeff	icient Test estimating activity conce	entrations (Bqkg ⁻) o	f = 0, = 1h and	[°] K in soil samples
		²³⁸ U	²³² Th	⁴⁰ K
²³⁸ U	Pearson Correlation	1	.423(**)	135
	Sig. (2-tailed)		.000	.268
²³² Th	Pearson Correlation	.423(**)	1	.611(**)
	Sig. (2-tailed)	.000		.000
40 K	Pearson Correlation	135	.611(**)	1
	Sig. (2-tailed)	.268	.000	
**. Correlation is significant at	the 0.01 level (2-tailed).			

	Table-2	
Pearson Correlation	n Coefficient Test estimating activity concentrations (Bakg ⁻¹) of ²³	³⁸ U, ²³² Th and ⁴⁰ K in soil samples

Descriptive Statistical summary of ²³⁸ U, ²³² Th, ⁴⁰ K, absorbed dose rate(nGyh ⁻¹) and annual effective dose (µSvy ⁻¹)					
Parameter	²³⁸ U	²³² Th	⁴⁰ K	D(nGyh ⁻¹)	$H(\mu Svy^{-1})$
Average	50.27	59.21	44.17	153.65	188.56
Standard Deviation	51.91	58.83	25.44	104.20	127.87
Minimum	7.13	4.30	9.45	23.87	29.29
Maximum	401.13	245.59	90.43	586.06	719.23
Contribution% to the total dose rate	32.72	38.54	28.75		

.... •

Figure-3

Location of ²³⁸U distribution in soil samples fromeastern and northern regions of South Kordofan State

Location of ²³²Th distribution in soil samples from eastern and northern regions of South Kordofan State

Figure-5

Location of ⁴⁰K distribution in soil samples from eastern and northern regions of South Kordofan State

Figure-6

Relative contribution of ²³⁸U, ²³²Th and ⁴⁰K to the total absorbed dose rate in air as Calculated using UNSCEAR DRCF in soil samples

Conclusion

To sum up the following conclusion can be, i. The activity distribution of 238 U, 232 Th and 40 K in soil samples from eastern and northern regions of South Kordofan State were found to be relatively higher than UNSCER data. ii. There are significant correlation was found between 232 Th and each of 238 U and 40 K while no significant correlation was found between 232 Th and each of 238 U and 40 K while no significant correlation was found between 232 U and 40 K.iii.The main contribution to overall absorbed dose in air derived from 232 Th. iiii.The absorbed dose rate and annual effective dose ineastern and northern regions of South Kordofan State is above worldwide average characteristics for high background areas

Acknowledgement

The researcher Acknowledges Sudan Atomic Energy Commission for their help in theanalysis of Study samples. The thanks also go to the administration of Al Dalang University and to the Department of geology, Faculty of Petroleum and Minerals, Al Neelain University.

References

1. UNSCEAR (2000). United Nations Scientific Committee on the Effects of Atomic Radiation: Sources, effects and risks of ionizing radiation. Report to General Assembly, with Scientific Annexes .New York, United Nations.

- 2. Rudge S.A., Johnson M.S., Leah R.T and Jones S.R. (1993). Biological transport of radiocaesium in a Seminatural grass land ecosystem. Soils, vegetation and invertebrates, *Journal of Environmental Radioactivity*, 19(3), 173-198.
- **3.** Sam A. K and Holm E. (1995). The natural radioactivity in phosphate deposits from Sudan, *The Science of the Total Environment*, 162(2), 173-178.
- **4.** Clouvas A., Xanthos S and Antonopwlos M. Domis. (2001). Extened Survey of Indoor and Outdoor Terrestrial Gamma Radiation in Greek Urban Areas by In situ Gamma Spectrometry with Portable Ge Detector. *Radiation Protection Dosimetry*, 94(3), 233–245.
- 5. Copplestone D., Johnson M.S and Jones S.R. (2001). Behavior and transport of radionuclides in Soil and Vegetationof a sand due ecosystem. *Journal of Environmental Radioactivity*, 55(1), 93-108.
- 6. Dowdall M., Vicat K., Frearson I., Gerland S., Lind B and Shaw G. (2004). Assessment of the radiological impacts of historical coal mining operations on the environment of Ny- Alesund, Svalbard, *Journal of Environmental Radioactivity*, 71(2), 101-114.
- 7. El-BahiSamia M., El-Dine Nadia W., Ahmed Fawzia., Sroor Amany and Abdl Salaam Mahitab M. A. (2005). Natural radioactivity levels for selected kinds of Egyptian sand, *Isotopes in Environmental and Health Studies*, 41(2), 161-168.

- 8. El Aassy Ibrahim M., El Galy Mohamed M., Nada Afaf A., El Feky Mohamed G., Abd ElMaksoud Thanaa M., Talaat Shadia M. and Ibrahim Eman M. (2011). Effect of alterationProcesses on the distribution of radionuclides in uraniferous sedimentary rocks andtheir environmental rocks and their environmental impact, southwestern Sinai, Egypt, *J. Radioanal Nucl Chem*, 289(1), 173-184.
- **9.** Tso M.Y and Leung J.K. (2000). Population Dose Due to Natural Radiations in Hong Kong, Health Physics, 78(5), 555-558.
- **10.** Degerlier M., Karahan G. and Ozger G. (2008). Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey, *Journal of Environmental Radioactivity*, 99(7), 1018-1025.
- **11.** Abdelati Sadig and J.R. VAIL. (1986). Geology and regional gravity traverses of the NubaMountains, Kordofan Province, Sudan, *Journal of African Earth Sciences*, 5(4), 325-338.

- **12.** Kohshi C., Takao Iand Hideo S. (2001). Terrestrial gamma radiation in Kochi Prefecture, Japan, *J. of health science* 47(4), 362-372.
- **13.** Sam A. Khand Moawia M. Elmahadi. (2007). Assessment of Absorbed Dose Rate in air over Plowed arable lends in Sinnar state, *Central Sudan. J. Radiation Protection Dosimetry*, 129(4), 473-477.
- Sam A.K., Sirelkhatim D.A., Hassona R.K., Hassan R.E., Hag Musa E and Ahmed M.M.O. (2002). Assessment of Gamma Dose Rate overa Suspected Uranium Mineralization Area of JabelMun, western Sudan, *Journal Radiation Protection Dosimetry*, 102(2), 169-174.
- **15.** Michalis Tzortzis, Haralabos Tsertos, Stelios Christofides and George Christodoulides (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks., *J. Radiation Measurements*, 37(3), 221-229.